Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify a Molecule That Coordinates the Movement of Cells

06.10.2008
A molecule bridging two proteins that gives cells their shape and ability to migrate in a directed fashion may also shed light on how to keep cancer from spreading.

Even cells commute. To get from their birthplace to their work site, they sequentially attach to and detach from an elaborate track of exceptionally strong proteins known as the extracellular matrix. Now, in research to appear in the October 3 issue of Cell, scientists at the Howard Hughes Medical Institute and Rockefeller University show that a molecule, called ACF7, helps regulate and power this movement from the inside -- findings that could have implications for understanding how cancer cells metastasize.

"The most dangerous part of cancer is that cancer cells migrate from their primary location and invade other parts of the body," says first author Xiaoyang Wu, a postdoc in Elaine Fuchs's Laboratory of Mammalian Cell Biology and Development. "ACF7 facilitates cell movement, so it's possible that the less ACF7 a cell has, the less malignant it would become. It's a really exciting question in cancer biology now."

To travel along the extracellular matrix, cells must stick to and unstick from it via focal adhesions, structures composed of molecules that connect the inside to the outside of the cell. (While some molecules connect to the matrix, others connect to a scaffold inside the cell called the cytoskeleton.) As these structures collectively assemble and disassemble, the cell walks forward. Fuchs and Wu show that ACF7 can not only access energy stores to power this movement from within but also coordinate it by linking two fiber-like proteins called f-actin and microtubules, which together form the cytoskeleton and help give cells their shape.

"Inside the cell, actin cables converge at focal adhesions at the cell's leading edge," Fuchs explains. "We found that ACF7 guides microtubules along a roadway of actin cables and leads them toward the focal adhesions at the cell's periphery. Among the cargo transported along microtubules are factors that disassemble focal adhesions. Hence by coupling microtubule, actin and focal adhesion dynamics within the cell, ACF7 becomes an orchestrator of directed cellular movement."

In particular, Wu and Fuchs, who is also a Howard Hughes Medical Institute investigator and Rebecca C. Lancefield Professor at Rockefeller, found that without ACF7, microtubules were no longer guided toward the focal adhesions in a directed manner. They also noticed that cellular movement slowed, suggesting that the sticky adhesive sites were no longer assembling and disassembling efficiently.

To figure out why, Fuchs and Wu studied how quickly wounds heal in mice. "During injury, stem cells proliferate and migrate to the affected site and replenish lost cells," explains Wu. "We saw that the cells without ACF7 proliferated normally, but they moved very, very slowly compared to normal skin cells. So the problem wasn't with abnormal proliferation but with cell migration." When the researchers mutated ACF7 so it couldn't release stored energy in cells, ACF7 linked f-actin and microtubules but the cells were also sluggish in their movement.

In previous work, the Fuchs team had already showed that ACF7 appeared side by side with focal adhesion molecules, but they never knew, until now, that ACF7 guides microtubules along actin cables to these sites. "Now, we have a better idea of why it's important for ACF7 to be there," says Fuchs. "In order to make the adhesive sites dynamically stick and unstick, assembly and disassembly factors need to be recruited there. The intracellular roadway governed by ACF7 makes that possible."

In the future, this information could be relevant in developing cancer therapeutics. "A major goal in the clinical arena is to halt cancer cells from migrating, a process important in metastasis," says Fuchs. By suppressing ACF7's function in cancer cells, it might be possible to slow metastasis.

This research was supported by the National Institutes of Health.

Thania Benios | Newswise Science News
Further information:
http://www.rockefeller.edu
http://newswire.rockefeller.edu

Further reports about: ACF7 Cancer Cell Molecule Protein adhesion cancer cells cell movement cytoskeleton microtubule

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>