Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify a Molecule That Coordinates the Movement of Cells

06.10.2008
A molecule bridging two proteins that gives cells their shape and ability to migrate in a directed fashion may also shed light on how to keep cancer from spreading.

Even cells commute. To get from their birthplace to their work site, they sequentially attach to and detach from an elaborate track of exceptionally strong proteins known as the extracellular matrix. Now, in research to appear in the October 3 issue of Cell, scientists at the Howard Hughes Medical Institute and Rockefeller University show that a molecule, called ACF7, helps regulate and power this movement from the inside -- findings that could have implications for understanding how cancer cells metastasize.

"The most dangerous part of cancer is that cancer cells migrate from their primary location and invade other parts of the body," says first author Xiaoyang Wu, a postdoc in Elaine Fuchs's Laboratory of Mammalian Cell Biology and Development. "ACF7 facilitates cell movement, so it's possible that the less ACF7 a cell has, the less malignant it would become. It's a really exciting question in cancer biology now."

To travel along the extracellular matrix, cells must stick to and unstick from it via focal adhesions, structures composed of molecules that connect the inside to the outside of the cell. (While some molecules connect to the matrix, others connect to a scaffold inside the cell called the cytoskeleton.) As these structures collectively assemble and disassemble, the cell walks forward. Fuchs and Wu show that ACF7 can not only access energy stores to power this movement from within but also coordinate it by linking two fiber-like proteins called f-actin and microtubules, which together form the cytoskeleton and help give cells their shape.

"Inside the cell, actin cables converge at focal adhesions at the cell's leading edge," Fuchs explains. "We found that ACF7 guides microtubules along a roadway of actin cables and leads them toward the focal adhesions at the cell's periphery. Among the cargo transported along microtubules are factors that disassemble focal adhesions. Hence by coupling microtubule, actin and focal adhesion dynamics within the cell, ACF7 becomes an orchestrator of directed cellular movement."

In particular, Wu and Fuchs, who is also a Howard Hughes Medical Institute investigator and Rebecca C. Lancefield Professor at Rockefeller, found that without ACF7, microtubules were no longer guided toward the focal adhesions in a directed manner. They also noticed that cellular movement slowed, suggesting that the sticky adhesive sites were no longer assembling and disassembling efficiently.

To figure out why, Fuchs and Wu studied how quickly wounds heal in mice. "During injury, stem cells proliferate and migrate to the affected site and replenish lost cells," explains Wu. "We saw that the cells without ACF7 proliferated normally, but they moved very, very slowly compared to normal skin cells. So the problem wasn't with abnormal proliferation but with cell migration." When the researchers mutated ACF7 so it couldn't release stored energy in cells, ACF7 linked f-actin and microtubules but the cells were also sluggish in their movement.

In previous work, the Fuchs team had already showed that ACF7 appeared side by side with focal adhesion molecules, but they never knew, until now, that ACF7 guides microtubules along actin cables to these sites. "Now, we have a better idea of why it's important for ACF7 to be there," says Fuchs. "In order to make the adhesive sites dynamically stick and unstick, assembly and disassembly factors need to be recruited there. The intracellular roadway governed by ACF7 makes that possible."

In the future, this information could be relevant in developing cancer therapeutics. "A major goal in the clinical arena is to halt cancer cells from migrating, a process important in metastasis," says Fuchs. By suppressing ACF7's function in cancer cells, it might be possible to slow metastasis.

This research was supported by the National Institutes of Health.

Thania Benios | Newswise Science News
Further information:
http://www.rockefeller.edu
http://newswire.rockefeller.edu

Further reports about: ACF7 Cancer Cell Molecule Protein adhesion cancer cells cell movement cytoskeleton microtubule

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>