Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists hope to end sleeping sickness by making parasite that causes it self-destruct

15.01.2010
New data offer an up-close look at the enzyme that protects the protozoa and how one compound obstructs those efforts

After many years of study, a team of researchers is releasing data today that it hopes will lead to new drug therapies that will kill the family of parasites that causes a deadly trio of insect-borne diseases and has afflicted inhabitants of underdeveloped and developing nations for centuries.

In an article to be published in today's issue of the Journal of Biological Chemistry, Vanderbilt University scientist Galina Lepesheva and her team are reporting their successful attempt at determining the structure of an enzyme essential to the survival of the protozoan parasites that cause sleeping sickness, Chagas disease and leishmaniasis. They say this new information provides the first up-close look at the busy enzyme and, perhaps more importantly, shows how one compound in particular prevents it from conducting business as usual.

"With human migrations, HIV co-infections and the broadening of the host reservoirs due to climate changes, sleeping sickness and other diseases caused by these protozoan pathogens are now spreading around the world, including within the United States and Europe," said Lepesheva, a research associate professor at the Vanderbilt's department of biochemistry. "It is our hope that the results of our work might be helpful for the development of an effective treatment for such protozoan infections, some of which still remain incurable."

Lepesheva and her team have set their sights on the trypanosomatidae family of parasites, which causes a trio of horrifying diseases:

• Human African Trypanosomiasis is transferred by the biting tsetse (pronounced TEE-TEE) fly in sub-Saharan Africa. Its victims suffer only flulike symptoms in the first phase of infection, but it often isn't diagnosed till after the parasite has entered the central nervous system, causing mental deterioration, mood swings, coma and death.

• Chagas disease is passed on by the the reduviid, or "kissing bug," named for its tendency to bite its victims around the lips, in South and Central America. The parasite that causes Chagas is the world's leading cause of heart disease, and the life expectancy for patients with chronic symptoms decreases by an average of nine years.

• Leishmaniasis, a disease transferred by the biting female sandfly, is prevalent in four continents and comes in four varieties, all of which either disfigure or kill its hosts. One causes skin ulcers; another causes chronic lesions resembling leprosy; the third destroys the mucus membranes in the nose, mouth and throat; the fourth causes high fever, organ swelling and, if left untreated, has a fatality rate as high as 100 percent within two years.

Screening for trypanosomal diseases is challenging, because they most often affect people in remote locations with few or no medical resources, and existing treatments lack specificity and can cause severe side effects.

Lepesheva and her team sought to damage the single-celled parasite's cellular membrane, knowing that if they could weaken that barrier, the regulation of the intercellular environment would be disrupted, and the parasite would die.

"It has been known for some time that T. brucei, the parasite that causes sleeping sickness, consumes cholesterol in its human host's blood to shore up the cellular membrane, and researchers presumed there was no getting around that," Lepesheva said. "But we suspected the parasite, like plants and animals, still might need to make its own sterols for growth and development -- functional sterols – that could be targeted and inhibited."

The team chose to attack the parasite's enzyme known as 14DM, which is short for sterol 14á-demethylase. They picked 14DM because it has a counterpart in fungi, which cause athlete's foot and ringworm, and such fungal infections are commonly treated with drugs that prevent 14DM from making ergosterol, a sterol required for membrane synthesis.

"We tested hundreds of compounds as potential 14DM inhibitors. One of them, VNI, was one of the best in terms of killing the parasites that cause sleeping sickness, Chagas and Leishmaniasis," she said.

The team named the inhibitor VNI, short for Vienna Novartis Inhibitor, because it originally was synthesized at the Novartis Research Institute in Vienna. It binds with the worker enzyme, a lot like a piece fits snugly into a jigsaw puzzle, and blocks the enzyme's ability to make the critical sterol.

Lepesheva said having a clear picture of the structure of the enzyme and how VNI fits into it explains why VNI is effective, and it opens the door to structure-based new drug design.

Lepesheva, the lead author on study, works in the laboratory of professor Michael Waterman, chairman of the department of biochemistry at Vanderbilt. They collaborated with researchers at Vanderbilt, Nashville's Meharry Medical College, the University of Toronto, the Universite Libre de Bruxelles in Belgium, Northwestern University and Texas Tech University. The work was supported by funding from the American Heart Association and the National Institutes of Health.

By being named a "Paper of the Week" by the Journal of Biological Chemistry, Lepesheva's article has been categorized in the top 1 percent of papers reviewed by the editorial board in terms of significance and overall importance.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions.

Angela Hopp | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>