Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find key to growth of "bad" bacteria in inflammatory bowel disease

08.02.2013
Research is the first to shed light on how harmful gut bacteria thrive in the intestine
Scientists have long puzzled over why “bad” bacteria such as E. coli can thrive in the guts of those with inflammatory bowel disease (IBD), causing serious diarrhea. Now UC Davis researchers have discovered the answer—one that may be the first step toward finding new and better treatments for IBD.

The researchers discovered a biological mechanism by which harmful bacteria grow, edge out beneficial bacteria and damage the gut in IBD. This new understanding, published in the Feb. 8 issue of Science, may help researchers develop new treatments for IBD with fewer side effects than current therapies.

IBD begins when “good” bacteria are mistakenly killed by the immune system, while harmful bacteria multiply — resulting in inflammation and damage to the intestines, and chronic episodes of abdominal pain, cramping, diarrhea and other changes in bowel habits. It’s estimated that IBD, which includes ulcerative colitis and Crohn’s disease, affects 1.4 million people in the U.S., according to the Centers for Disease Control and Prevention.

In test-tube and animal studies, the researchers found that potentially harmful bacteria in the intestine called Enterobacteriaceae use nitrate — a byproduct formed during the intestinal inflammation in IBD — to grow and thrive. Enterobacteriaceae strains include certain E. coli bacteria, which can worsen the intestinal damage of IBD. Eventually, the intestines of those with IBD become overrun by harmful bacteria, and the numbers of normal good bacteria in the gut decrease.

“Much like humans use oxygen, E. coli can use nitrate as a replacement for oxygen to respire, produce energy and grow,” said lead author Andreas Baumler, a professor of medical microbiology and immunology at UC Davis.

“In IBD, nitrate produced by inflammation in the gut allows E. coli to take a deep ‘breath,’ and beat out our beneficial microbes in the competition for nutrients,” he said.

The inflammation in the intestines of those with IBD leads to the release of nitric oxide radicals that are powerful in attacking bacteria, Baumler explained. Yet these nitric oxide radicals are also very unstable, and eventually decompose into nitrate, which can be used by bacteria like E. coli to thrive and grow. By contrast, good bacteria in the gut grows through fermentation — a much slower process.

Determining the reasons why bacteria like E. coli can edge out good bacteria in the gut is crucial for determining new ways to halt the IBD disease process, according to Baumler. Current treatments for IBD suppress the immune response through antibiotics, corticosteroids or other powerful immune-modifying drugs. But long-term side effects can limit their use and their effectiveness for IBD patients.

The UC Davis team’s research indicates that targeting the molecular pathways that generate nitric oxide and nitrate, as well as other molecules that feed harmful gut bacteria, could calm down and normalize the intestinal environment in IBD, Baumler noted. They are already doing research with one candidate drug that could halt the multiple pathways by which harmful bacteria thrive in IBD.

“The idea would be to inhibit all pathways that produce molecules that can be used by bacteria such as E. coli for respiration and growth,” Baumler said. “Essentially you could then smother the bacteria.”

Other study authors include Sebastian E. Winter, Maria G. Winter, Mariana N. Xavier, Parameth Thiennimitr, Victor Poon, A. Marijke Keestra, Ina Popova, Sanjai J. Parikh, Renee M. Tsolis, and Valley J. Stewart of UC Davis; and Richard C. Laughlin, Gabriel Gomez, Jing Wu, Sara D. Lawhon, and L. Garry Adams of Texas A&M University.

This work was supported by the California Agricultural Experiment Station and Public Health Service grants AI089078, AI076246 and AI088122 along with a scholarship from the Faculty of Medicine, Chiang Mai University, Thailand.

About UC Davis Health System
UC Davis Health System is improving lives and transforming health care by providing excellent patient care, conducting groundbreaking research, fostering inter-professional education, and creating innovative partnerships with the community. The academic health system includes one of the country's best medical schools, a 619-bed acute-care teaching hospital, an 800-member physician's practice group and the new Betty Irene Moore School of Nursing. It is home to a National Cancer Institute-designated comprehensive cancer center, an international neurodevelopmental institute, a stem cell institute and a comprehensive children's hospital. Other nationally prominent centers focus on advancing telemedicine, improving vascular care, eliminating health disparities and translating research findings into new treatments for patients. Together, they make UC Davis a hub of innovation that is transforming health for all.

Carole Gan | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu
http://healthsystem.ucdavis.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>