Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find key to growth of "bad" bacteria in inflammatory bowel disease

08.02.2013
Research is the first to shed light on how harmful gut bacteria thrive in the intestine
Scientists have long puzzled over why “bad” bacteria such as E. coli can thrive in the guts of those with inflammatory bowel disease (IBD), causing serious diarrhea. Now UC Davis researchers have discovered the answer—one that may be the first step toward finding new and better treatments for IBD.

The researchers discovered a biological mechanism by which harmful bacteria grow, edge out beneficial bacteria and damage the gut in IBD. This new understanding, published in the Feb. 8 issue of Science, may help researchers develop new treatments for IBD with fewer side effects than current therapies.

IBD begins when “good” bacteria are mistakenly killed by the immune system, while harmful bacteria multiply — resulting in inflammation and damage to the intestines, and chronic episodes of abdominal pain, cramping, diarrhea and other changes in bowel habits. It’s estimated that IBD, which includes ulcerative colitis and Crohn’s disease, affects 1.4 million people in the U.S., according to the Centers for Disease Control and Prevention.

In test-tube and animal studies, the researchers found that potentially harmful bacteria in the intestine called Enterobacteriaceae use nitrate — a byproduct formed during the intestinal inflammation in IBD — to grow and thrive. Enterobacteriaceae strains include certain E. coli bacteria, which can worsen the intestinal damage of IBD. Eventually, the intestines of those with IBD become overrun by harmful bacteria, and the numbers of normal good bacteria in the gut decrease.

“Much like humans use oxygen, E. coli can use nitrate as a replacement for oxygen to respire, produce energy and grow,” said lead author Andreas Baumler, a professor of medical microbiology and immunology at UC Davis.

“In IBD, nitrate produced by inflammation in the gut allows E. coli to take a deep ‘breath,’ and beat out our beneficial microbes in the competition for nutrients,” he said.

The inflammation in the intestines of those with IBD leads to the release of nitric oxide radicals that are powerful in attacking bacteria, Baumler explained. Yet these nitric oxide radicals are also very unstable, and eventually decompose into nitrate, which can be used by bacteria like E. coli to thrive and grow. By contrast, good bacteria in the gut grows through fermentation — a much slower process.

Determining the reasons why bacteria like E. coli can edge out good bacteria in the gut is crucial for determining new ways to halt the IBD disease process, according to Baumler. Current treatments for IBD suppress the immune response through antibiotics, corticosteroids or other powerful immune-modifying drugs. But long-term side effects can limit their use and their effectiveness for IBD patients.

The UC Davis team’s research indicates that targeting the molecular pathways that generate nitric oxide and nitrate, as well as other molecules that feed harmful gut bacteria, could calm down and normalize the intestinal environment in IBD, Baumler noted. They are already doing research with one candidate drug that could halt the multiple pathways by which harmful bacteria thrive in IBD.

“The idea would be to inhibit all pathways that produce molecules that can be used by bacteria such as E. coli for respiration and growth,” Baumler said. “Essentially you could then smother the bacteria.”

Other study authors include Sebastian E. Winter, Maria G. Winter, Mariana N. Xavier, Parameth Thiennimitr, Victor Poon, A. Marijke Keestra, Ina Popova, Sanjai J. Parikh, Renee M. Tsolis, and Valley J. Stewart of UC Davis; and Richard C. Laughlin, Gabriel Gomez, Jing Wu, Sara D. Lawhon, and L. Garry Adams of Texas A&M University.

This work was supported by the California Agricultural Experiment Station and Public Health Service grants AI089078, AI076246 and AI088122 along with a scholarship from the Faculty of Medicine, Chiang Mai University, Thailand.

About UC Davis Health System
UC Davis Health System is improving lives and transforming health care by providing excellent patient care, conducting groundbreaking research, fostering inter-professional education, and creating innovative partnerships with the community. The academic health system includes one of the country's best medical schools, a 619-bed acute-care teaching hospital, an 800-member physician's practice group and the new Betty Irene Moore School of Nursing. It is home to a National Cancer Institute-designated comprehensive cancer center, an international neurodevelopmental institute, a stem cell institute and a comprehensive children's hospital. Other nationally prominent centers focus on advancing telemedicine, improving vascular care, eliminating health disparities and translating research findings into new treatments for patients. Together, they make UC Davis a hub of innovation that is transforming health for all.

Carole Gan | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu
http://healthsystem.ucdavis.edu

More articles from Life Sciences:

nachricht Severity of enzyme deficiency central to favism
26.07.2016 | Universität Zürich

nachricht From vision to hand action
26.07.2016 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New movie screen allows for glasses-free 3-D

26.07.2016 | Information Technology

Scientists develop painless and inexpensive microneedle system to monitor drugs

26.07.2016 | Health and Medicine

Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'

26.07.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>