Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Dissimilar Proteins Evolved Similar 7-Part Shape

03.05.2013
Solving the structure of a critical human molecule involved in cancer, scientists at The Scripps Research Institute (TSRI) have found what they call a good example of structural conservation—dissimilar genes that keep very similar shapes.

Described this week in the journal Nature, the work brings attention to what scientists have thought of as a family of molecules called the G protein-coupled receptors (GPCRs). Many GPCRs are important targets for drug design. However, the new work suggests that GPCRs may, in fact, be a subset of a larger group.


Image courtesy of the Stevens lab, The Scripps Research Institute.

The new research shows the smoothened receptor (SMO) has remarkable structural similarities to genetically unrelated proteins.

“This work highlights the need to modify how we classify the GPCR family,” said TSRI Professor Raymond Stevens, PhD, the senior author on the study. “The study suggests we should start calling the family 7-transmembrane receptors, which has been proposed by others before, to better reflect the diversity of the family, both structurally and in terms of function.”

The new classification would include proteins with similar shapes to GPCRs—like the smoothened receptor (SMO), which was the subject of the new research.

Different Genes, Same Structure

In the study, the TSRI team solved the high-resolution structure of SMO, which is the first non-class A GPCR structure published to date (class A GPCRs are also known as rhodopsin-like GPCRs). The results showed the molecule is nearly identical to the classic GPCR shape, even though it bears almost no similarity in terms of genetic sequence.

Often, two proteins with very different sequences have different structures, said Chong Wang, a graduate student at TSRI’s Kellogg School of Science and Technology who is the first author on the study.

“These receptors are very different—less than 10 percent sequence identity, and yet they have the same 7-transmembrane helical fold,” Wang added.

“This is a great example of structural conservation of the 7-transmembrane fold,” said Stevens. “A key question is, why the magic number 7?”

Potential Target for Drug Design

The work is also significant because the SMO protein itself is a potential target for drug design.

SMO is important for proper growth in the early stages of mammalian development, and animals with deficiencies in the activities of this protein develop severe deformities in the womb. The initial discovery was made in 1957, when sheep in Idaho ate corn lily containing cyclopamine, and newborns were observed to develop a single eye—a characteristic for which the condition, known as “cyclopia,” is named. In work published in the journal Nature in 2000, Stanford University researchers Philip Beachy and Matthew Scott found cyclopamine inhibits the SMO receptor.

The body reduces its need for SMO in adulthood, and its activity is usually curtailed. However, later in life the protein can also play a role in disease, this time by helping cancerous tumors grow. SMO receptor inhibition has been harnessed as a means to reduce basal cell carcinoma, a common form of skin cancer.

The discovery of the structure of SMO may help researchers develop new molecules to treat cancer and other diseases.

“The structure of the human smoothened receptor bound to an anti-cancer compound will help us understand the receptor’s role in cancer, as well as its role in the normal process of embryonic development,” said Jean Chin, PhD, of the National Institutes of Health’s National Institute of General Medical Sciences, which partly supported the research. “In addition, comparison of smoothened’s unique structure with those of the more conventional GPCRs will teach us a lot about how these receptors respond to the many therapeutics they interact with.”

The Nature article, “Structure of the human smoothened receptor bound to an antitumor agent,” was authored by Chong Wang, Huixian Wu, Vsevolod Katritch, Gye Won Han, Xi-Ping Huang, Wei Liu, Fai Yiu Siu, Bryan L. Roth, Vadim Cherezov and Raymond C. Stevens. For more information, see: http://dx.doi.org/10.1038/nature12167

This work was funded by the National Institutes of Health through grant numbers P50 GM073197, U54 GM094618, F32 DK088392, R01 MH61887, U19 MH82441 and R01 DA27170. Additional support was provided through the National Institute of Mental Health Psychoactive Drug Screening Program and the Michael Hooker Chair of Pharmacology to Bryan Roth at the University of North Carolina.

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.

Mika Ono | Newswise
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Study suggests oysters offer hot spot for reducing nutrient pollution
17.10.2017 | Virginia Institute of Marine Science

nachricht World first for reading digitally encoded synthetic molecules
17.10.2017 | CNRS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>