Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Differences in Embryonic Stem Cells and Reprogrammed Skin Cells

03.07.2009
UCLA researchers have found that embryonic stem cells and skin cells reprogrammed into embryonic-like cells have inherent molecular differences, demonstrating for the first time that the two cell types are clearly distinguishable from one another.

The data from the study suggest that embryonic stem cells and the reprogrammed cells, known as induced pluripotent stem (iPS) cells, have overlapping but still distinct gene expression signatures.

The differing signatures were evident regardless of where the cell lines were generated, the methods by which they were derived or the species from which they were isolated, said Bill Lowry, a researcher with the Broad Stem Cell Research Center and a study author.

“We need to keep in mind that iPS cells are not perfectly similar to embryonic stem cells,” said Lowry, an assistant professor of molecular, cell and developmental biology. “We’re not sure what this means with regard to the biology of pluripotent stem cells. At this point our analyses comprise just an observation. It could be biologically irrelevant, or it could be manifested as an advantage or a disadvantage.”

The study appears in the July 2, 2009 issue of the journal Cell Stem Cell.

The iPS cells, like embryonic stem cells, have the potential to become all of the tissues in the body. However, iPS cells don’t require the destruction of an embryo.

The study was a collaboration between the labs of Lowry and UCLA researcher Kathrin Plath, who were among the first scientists and the first in California to reprogram human skin cells into iPS cells. The researchers performed microarray gene expression profiles on embryonic stem cells and iPS cells to measure the expression of thousands of genes at once, creating a global picture of cellular function.

Lowry and Plath noted that, when the molecular signatures were compared, it was clear that certain genes were expressed differently in embryonic stem cells than they were in iPS cells. They then compared their data to that stored on a National Institutes of Health data base, submitted by laboratories worldwide. They analyzed that data to see if the genetic profiling conducted in other labs validated their findings, and again they found overlapping but distinct differences in gene expression, Lowry said.

“This suggested to us that there could be something biologically relevant causing the distinct differences to arise in multiple labs in different experiments,” Lowry said. “That answered our first question: Would the same observation be made with cell lines created and maintained in other laboratories?”

Next, UCLA researchers wanted to confirm their findings in iPS cell lines created using the latest derivation methods. The cells from the UCLA labs were derived using an older method that used integrative viruses to insert four genes into the genome of the skin cells, including some genes known to cause cancer. They analyzed cell lines derived with newer methods that do not require integration of the reprogramming factors. Their analysis again showed different molecular signatures between iPS cells and their embryo-derived counterparts, and these signatures showed a significant degree of overlap with those generated with integrative methods.

To determine if this was a phenomenon limited to human embryonic stem cells, Lowry and Plath analyzed mouse embryonic stem cells and iPS lines derived from mouse skin cells and again validated their findings. They also analyzed iPS cell lines made from mouse blood cells with the same result

"We can’t explain this, but it appears something is different about iPS cells and embryonic stem cells,” Lowry said. “And the differences are there, no matter whose lab the cells come from, whether they’re human or mouse cells or the method used to derive the iPS cells. Perhaps most importantly, many of these differences are shared amongst lines made in various ways.”

Going forward, UCLA researchers will conduct more sophisticated analyses on the genes being expressed differently in the two cell types and try to understand what is causing that differential expression. They also plan to differentiate the iPS cells into various lineages to determine if the molecular signature is carried through to the mature cells. In their current study, Lowry and Plath did not look at differentiated cells, only the iPS and embryonic stem cells themselves.

Further study is crucial, said Mark Chin, a postdoctoral fellow and first author of the study.

"It will be important to further examine these cells lines in a careful and systematic manner, as has been done with other stem cell lines, if we are to understand the role they can play in clinical therapies and what effect the observed differences have on these cells," he said.

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 150 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA’s Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu.

Kim Irwin | Newswise Science News
Further information:
http://www.ucla.edu
http://www.stemcell.ucla.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>