Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Reasons Behind Snakes’ ‘Shrinking Heads’

21.03.2013
An international team of scientists led by Dr Kate Sanders from the University of Adelaide, and including Dr Mike Lee from the South Australian Museum, has uncovered how some sea snakes have developed ‘shrunken heads’ – or smaller physical features than their related species.

Their research is published today in the journal Molecular Ecology (doi: 10.1111/mec.12291).



A large head – “all the better to eat you with” - would seem to be indispensable to sea snakes, which typically have to swallow large spiny fish. However, there are some circumstances where it wouldn’t be very useful: sea snakes that feed by probing their front ends into narrow, sand eel burrows have evolved comically small heads.

The team has shown normal-shaped sea snakes can evolve such “shrunken heads” very rapidly. This process can rapidly lead to speciation (one species splitting into two).

The small-headed populations are also much smaller in absolute size than their ancestors, and these shape and size differences mean they tend to avoid interbreeding with their large-headed ancestors.

Dr Lee says, “A team led by my colleague Dr Kate Sanders at the University of Adelaide has been investigating genetic differences across all sea snakes, and we noticed that the blue-banded sea snake (Hydrophis cyanocinctus) and the slender-necked sea snake (Hydrophis melanocephalus) were almost indistinguishable genetically, despite being drastically different in size and shape.

“The slender-necked sea snake is half the size, and has a much smaller head, than the blue-banded sea snake.

“This suggested they separated very recently from a common ancestral species and had rapidly evolved their different appearances. One way this could have happened is if the ancestral species was large-headed, and a population rapidly evolved small heads to probe eel burrows - and subsequently stopped interbreeding with the large-headed forms.”

Dr Sanders says the research could have wider implications in other scientific studies: “Our results highlight the viviparous sea snakes as a promising system for studies of speciation and adaptive radiation in marine environments.”

Caption: A small-headed sea snake foraging in waters off the Ryuku Islands. Photo by Yoshitaka Tahara

Dr Michael Lee, Associate Professor
South Australian Museum and University of Adelaide
Mike.Lee@samuseum.sa.gov.au or Michael.S.Lee@adelaide.edu.au
Phone + 61 8 8207 7568)

Dr Michael Lee | Newswise
Further information:
http://www.adelaide.edu.au

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>