Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Reasons Behind Snakes’ ‘Shrinking Heads’

21.03.2013
An international team of scientists led by Dr Kate Sanders from the University of Adelaide, and including Dr Mike Lee from the South Australian Museum, has uncovered how some sea snakes have developed ‘shrunken heads’ – or smaller physical features than their related species.

Their research is published today in the journal Molecular Ecology (doi: 10.1111/mec.12291).



A large head – “all the better to eat you with” - would seem to be indispensable to sea snakes, which typically have to swallow large spiny fish. However, there are some circumstances where it wouldn’t be very useful: sea snakes that feed by probing their front ends into narrow, sand eel burrows have evolved comically small heads.

The team has shown normal-shaped sea snakes can evolve such “shrunken heads” very rapidly. This process can rapidly lead to speciation (one species splitting into two).

The small-headed populations are also much smaller in absolute size than their ancestors, and these shape and size differences mean they tend to avoid interbreeding with their large-headed ancestors.

Dr Lee says, “A team led by my colleague Dr Kate Sanders at the University of Adelaide has been investigating genetic differences across all sea snakes, and we noticed that the blue-banded sea snake (Hydrophis cyanocinctus) and the slender-necked sea snake (Hydrophis melanocephalus) were almost indistinguishable genetically, despite being drastically different in size and shape.

“The slender-necked sea snake is half the size, and has a much smaller head, than the blue-banded sea snake.

“This suggested they separated very recently from a common ancestral species and had rapidly evolved their different appearances. One way this could have happened is if the ancestral species was large-headed, and a population rapidly evolved small heads to probe eel burrows - and subsequently stopped interbreeding with the large-headed forms.”

Dr Sanders says the research could have wider implications in other scientific studies: “Our results highlight the viviparous sea snakes as a promising system for studies of speciation and adaptive radiation in marine environments.”

Caption: A small-headed sea snake foraging in waters off the Ryuku Islands. Photo by Yoshitaka Tahara

Dr Michael Lee, Associate Professor
South Australian Museum and University of Adelaide
Mike.Lee@samuseum.sa.gov.au or Michael.S.Lee@adelaide.edu.au
Phone + 61 8 8207 7568)

Dr Michael Lee | Newswise
Further information:
http://www.adelaide.edu.au

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>