Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover New Way Protein Degradation Is Regulated

29.04.2013
Proteins, unlike diamonds, aren’t forever. And when they wear out, they need to be degraded in the cell back into amino acids, where they will be recycled into new proteins.

Researchers at Rockefeller University and the Howard Hughes Medical Institute have identified a new way that the cell’s protein recycler, the proteasome, takes care of unwanted and potentially toxic proteins, a finding that has implications for treating muscle wasting, neurodegeneration and cancer.

The consensus among scientists has been that the proteasome is constantly active, chewing up proteins that have exceeded their shelf life. A mounting body of evidence now suggests that the proteasome is dynamically regulated, ramping up its activity when the cell is challenged with especially heavy protein turnover.

The researchers, postdoctoral associate Park F. Cho-Park and Hermann Steller, head of the Strang Laboratory of Apoptosis and Cancer Biology at Rockefeller, have shown that an enzyme called tankyrase regulates the proteasome’s activity. In addition, Cho-Park and Steller demonstrate that a small molecule called XAV939, originally identified by scientists at Novartis who developed it as therapeutic for colon cancer, inhibits tankyrase and blocks the proteasome’s activity. The research is reported in today’s issue of the journal Cell.

“Our findings have tremendous implications for the clinic since it gives a new meaning to an existing class of small-molecule compound,” says Steller, Strang Professor at Rockefeller and an investigator at HHMI. “In particular, our work suggests that tankyrase inhibitors may be clinically useful for treating multiple myeloma.”

Tankyrase was originally identified in the late 1990s by Rockefeller’s Titia de Lange and her colleagues in the Laboratory for Cell Biology and Genetics, who showed that it plays a role in elongating telomeres, structures that cap and protect the ends of chromosomes. In a series of experiments in fly and human cells, Cho-Park and Steller discovered that tankyrase uses a process called ADP-ribosylation to modify PI31, a key factor that regulates the activity and assembly of proteasome subunits into the active complex called 26S. By promoting the assembly of more 26S particles, cells under stress can boost their ability to break down and dispose of unwanted proteins.

The proteasome is currently a target for developing cancer therapeutics. The FDA has approved Velcade, a proteasome inhibitor, for the treatment of multiple myeloma and mantle cell lymphoma. However, patients on Velcade can experience peripheral neuropathy or become resistant to the drug.

Multiple myeloma cells need increased proteasome activity to survive. Preliminary data from Cho-Park and Steller show that XAV939 can block the growth of multiple myeloma cells by inhibiting the assembly of additional proteasomes without affecting the basal level of proteasomes in the cell. This selective targeting may mean fewer side effects for patients. “Drugs, such as XAV939, that inhibit the proteasome through other mechanisms than Velcade may have significant clinical value,” says Steller.

The findings by Cho-Park and Steller also link, for the first time, metabolism and regulation of the proteasome. Sometimes the proteasome digests too much protein, which can lead to loss of muscle, says Steller.

“This discovery reveals fundamental insights into protein degradation, a process important for normal cell biology, and a key factor in disorders such as muscle wasting and neurodegeneration,” said Stefan Maas of the National Institutes of Health’s National Institute of General Medical Sciences, which partly supported the study. “Intriguingly, the findings also enlighten ongoing research on cancer therapies, exemplifying the impact of basic research on drug development.”

Joseph Bonner | Newswise
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>