Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new method of proton transfer

22.03.2012
In a paradigm shift in the understanding of chemical reactions, a team from USC and Lawrence Berkeley National Lab finds that protons do not have to move along hydrogen bonds after all

Scientists at USC and Lawrence Berkeley National Lab have discovered a new route by which a proton (a hydrogen atom that lost its electron) can move from one molecule to another – a basic component of countless chemical and biological reactions.

"This is a radically new way by which proton transfer may occur," said Anna Krylov, professor of chemistry at the USC Dornsife College of Letters, Arts and Sciences. Krylov is a co-corresponding author of a paper on the new process that was published online by Nature Chemistry on March 18.

Krylov and her colleagues demonstrated that protons are not obligated to travel along hydrogen bonds, as previously believed. The finding suggests that protons may move efficiently in stacked systems of molecules, which are common in plant biomass, membranes, DNA and elsewhere.

Armed with the new knowledge, scientists may be able to better understand chemical reactions involving catalysts, how biomass (plant material) can be used as a renewable fuel source, how melanin (which causes skin pigmentation) protects our bodies from the sun's rays, and damage to DNA.

"By better understanding how these processes operate at molecular level, scientists will be able to design new catalysts, better fuels, and more efficient drugs," Krylov said.

Hydrogen atoms are often shared between two molecules, forming a so-called hydrogen bond. This bond determines structures and properties of everything from liquid water to the DNA double helix and proteins.

Hydrogen bonds also serve as pathways by which protons may travel from one molecule to another, like a road between two houses. But what happens if there's no road?

To find out, Krylov and fellow corresponding author Ahmed Musahid of the Lawrence Berkeley National Lab created a system in which two molecules were stacked on top of each other, without hydrogen bonds between them. Then they ionized one of the molecules to coax a proton to move from one place to another.

Ahmed and Krylov discovered that when there's no straight road between the two houses, the houses (molecules) can rearrange themselves so that their front doors are close together. In that way, the proton can travel from one to the other with no hydrogen bond – and with little energy. Then the molecules return to their original positions.

"We've come up with the picture of a new process," Krylov said.

This research was performed under the auspices of the iOpenShell Center and supported by the US Department of Energy, the Defense Threat Reduction Agency, and the National Science Foundation.

Robert Perkins | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>