Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Mechanism that Transforms Healthy Cells into Prostate Cancer

03.12.2010
A protein that is crucial for regulating the self-renewal of normal prostate stem cells, needed to repair injured cells or restore normal cells killed by hormone withdrawal therapy for cancer, also aids the transformation of healthy cells into prostate cancer cells, researchers at UCLA have found.

The findings, by researchers with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, may have important implications for controlling cancer growth and progression.

Done in primary cells and in animal models, the findings from the three-year study appear Dec. 2, 2010 in the early online edition of the peer-reviewed journal Cell Stem Cell.

The protein, called Bmi-1, is often up-regulated in prostate cancer, has been associated with higher grade cancers and is predictive of poor prognosis, according to previous studies. However, its functional roles in prostate stem cell maintenance and prostate cancer have been unclear, said Dr. Owen Witte, who is director of the Broad Stem Cell Research Center, a Howard Hughes Medical Institute investigator and senior author of the study.

A study of loss and gain of function in prostate stem cells indicated that Bmi-1 expression was required for self-renewal activity and maintenance of prostate stem cells with highly proliferative abilities. Loss of Bmi-1 expression blocks the self-renewal activity, protecting prostate cells from developing abnormal growth changes which can lead to cancer.

More importantly, Bmi-1 inhibition slowed the growth of an aggressive form of prostate cancer in animal models, in which the PTEN tumor suppressor gene was removed allowing the cancer to run wild, Witte said.

“We conclude by these results that Bmi-1 is a crucial regulator of self-renewal in adult prostate cells and plays important roles in prostate cancer initiation and progression,” Witte said. “It was encouraging to see that inhibiting this protein slows the growth of even a very aggressive prostate cancer, because that could give us new ways to attack this disease.”

UCLA stem cell researchers have been studying the mechanisms of prostate stem cells for years on the theory that the mechanism that gives the cells their unique ability to self-renew somehow gets high jacked by cancer cells, allowing the malignant cells to grow and spread. If the mechanism for self-renewal could be understood, researchers could find a way to interrupt it once it is taken over by the cancer cells, Witte said.

Rita Lukacs, a doctoral student in Witte’s laboratory and first author of the study, found that Bmi-1 inhibition also stops excessive self-renewal driven by other pathways. This suggests that the Bmi-1 pathway may be dominant to other genetic controls that affect the cancer phenotype.

“Prostate cancer can be initiated by so many different mutations, if we can find a key regulator of self-renewal, we can partially control the growth of the cancer no matter what the mutation is,” Lukacs said. “We’re attacking the process that allows the cancer cells to grow indefinitely. This provides us an alternate way of attacking the cancer by going to the core mechanism for cancer cell self-renewal and proliferation.”

Witte said future work will be centered on searching for methods to control these pathways in human prostate cancer cells.

Prostate cancer is the most frequently diagnosed non-skin cancer and the second most common cause of cancer-related deaths in men. This year alone, more than 277,000 men in the United States will be diagnosed with prostate cancer. Of those, 32,000 men will die from the disease.

This study was funded by the California Institute for Regenerative Medicine, Howard Hughes Medical Institute, Prostate Cancer Foundation, Ovarian Cancer Research Fund, a Stewart and Lynda Resnick Prostate Cancer Foundation Grant and a Stein/Oppenheimer Clinical Translational Seed Grant.

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA’s Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu.

Kim Irwin | Newswise Science News
Further information:
http://www.mednet.ucla.edu
http://www.stemcell.ucla.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>