Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover enzyme that 'cleans' cancer cells

01.02.2010
Scientists have discovered that an enzyme can rid cells of a gene believed to be responsible for a wide range of cancers.

Dr Jorg Hartkamp and Dr Stefan Roberts have found that the protease HtrA2 can “clean” cells of the oncogene WT1, which is found at high levels in many leukaemias and solid cancers such as breast and lung cancer.

Their work has given drug designers a new target which will allow them to develop treatments for all these cancers in which WT1 expression is elevated.

WT1 is a well-known factor in cancer, having been discovered 20 years ago. It suppresses the development of Wilms’ tumour of the kidney, a rare cancer that affects one in 10,000 children. However it has a cancer causing role in other forms of the disease, particularly leukemias such as acute myeloid leukaemia (AML) and chronic myeloid leukaemia (CML).

In addition high expression of WT1 is associated with a bad prognosis in AML patients, while trials using peptide vaccines against WT1 in patients with lung cancer, breast cancer and leukaemia were promising.

This latest study – published in the journal Molecular Cell and funded by the Wellcome Trust, Cancer Research UK and the Association of International Cancer Research (AICR) – is the first to identify the enzyme that can rid cells of WT1.

Dr Hartkamp, at the University of Manchester’s Faculty of Life Sciences, said: “The cancer causing role of WT1 has been known for many years, but how it worked was not understood so we studied a regulatory domain of WT1 to see what modified its activity. We carried out a fishing experiment and discovered the role of the protease HtrA2 instead, by accident. This discovery has a much bigger impact.

“We have filled in the black box of WT1. It is this protease that is doing the trick – it can clean cells of WT1.”

Dr Roberts, who initiated the work at Manchester and is now at the University at Buffalo, added: “There are great prognostic implications in leukaemias but this protease may have even more targets. It is unlikely that a protease cleaves only one transcription factor such as WT1.”

Dr Lesley Walker, director of cancer information at Cancer Research UK, said: “This research sheds new light about how levels of WT1 are controlled and will help us understand more about its role in cancer. Although still at an early stage, this research is an exciting advance and could help to improve the treatment of types of cancer where WT1 is known to have an influence.”

AICR's Scientific Adviser Dr Mark Matfield said: “This exciting new finding shows why it is so important to carry out basic research into cancer. More and more these days, we see basic research discovering something unexpected about cancer that could be a major new step forward. The more we find out about cancer the closer we get to beating it.”

The team plans to study HtrA2 further, to find out how it is inactivated in cancer cells (allowing WT1 to proliferate) and what other targets HtrA2 has. This will help pharmaceutical companies design a drug to reactivate HtrA2 and apply the protease to different diseases.

It is hoped that patients will be screened for a high level of WT1 and, if this is the case, clinicians can reactivate HtrA2. And as WT1 expression is low in healthy adults, oncogenic expression of WT1 has been found to be tumour specific so targeting WT1 will be less damaging to the patient’s general health.

Notes for editors
The paper ‘The Wilms’ Tumour Suppressor Protein WT1 is processed by the serine protease HtrA2/Omi’ is available at http://www.cell.com/molecular-cell/fulltext/S1097-2765(09)00954-X

For more information or an interview with Dr Jorg Hartkamp, contact Media Relations Officer Mikaela Sitford on 0161 275 2111, 07768 980942 or Mikaela.Sitford@manchester.ac.uk

Mikaela Sitford | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>