Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover enzyme that 'cleans' cancer cells

01.02.2010
Scientists have discovered that an enzyme can rid cells of a gene believed to be responsible for a wide range of cancers.

Dr Jorg Hartkamp and Dr Stefan Roberts have found that the protease HtrA2 can “clean” cells of the oncogene WT1, which is found at high levels in many leukaemias and solid cancers such as breast and lung cancer.

Their work has given drug designers a new target which will allow them to develop treatments for all these cancers in which WT1 expression is elevated.

WT1 is a well-known factor in cancer, having been discovered 20 years ago. It suppresses the development of Wilms’ tumour of the kidney, a rare cancer that affects one in 10,000 children. However it has a cancer causing role in other forms of the disease, particularly leukemias such as acute myeloid leukaemia (AML) and chronic myeloid leukaemia (CML).

In addition high expression of WT1 is associated with a bad prognosis in AML patients, while trials using peptide vaccines against WT1 in patients with lung cancer, breast cancer and leukaemia were promising.

This latest study – published in the journal Molecular Cell and funded by the Wellcome Trust, Cancer Research UK and the Association of International Cancer Research (AICR) – is the first to identify the enzyme that can rid cells of WT1.

Dr Hartkamp, at the University of Manchester’s Faculty of Life Sciences, said: “The cancer causing role of WT1 has been known for many years, but how it worked was not understood so we studied a regulatory domain of WT1 to see what modified its activity. We carried out a fishing experiment and discovered the role of the protease HtrA2 instead, by accident. This discovery has a much bigger impact.

“We have filled in the black box of WT1. It is this protease that is doing the trick – it can clean cells of WT1.”

Dr Roberts, who initiated the work at Manchester and is now at the University at Buffalo, added: “There are great prognostic implications in leukaemias but this protease may have even more targets. It is unlikely that a protease cleaves only one transcription factor such as WT1.”

Dr Lesley Walker, director of cancer information at Cancer Research UK, said: “This research sheds new light about how levels of WT1 are controlled and will help us understand more about its role in cancer. Although still at an early stage, this research is an exciting advance and could help to improve the treatment of types of cancer where WT1 is known to have an influence.”

AICR's Scientific Adviser Dr Mark Matfield said: “This exciting new finding shows why it is so important to carry out basic research into cancer. More and more these days, we see basic research discovering something unexpected about cancer that could be a major new step forward. The more we find out about cancer the closer we get to beating it.”

The team plans to study HtrA2 further, to find out how it is inactivated in cancer cells (allowing WT1 to proliferate) and what other targets HtrA2 has. This will help pharmaceutical companies design a drug to reactivate HtrA2 and apply the protease to different diseases.

It is hoped that patients will be screened for a high level of WT1 and, if this is the case, clinicians can reactivate HtrA2. And as WT1 expression is low in healthy adults, oncogenic expression of WT1 has been found to be tumour specific so targeting WT1 will be less damaging to the patient’s general health.

Notes for editors
The paper ‘The Wilms’ Tumour Suppressor Protein WT1 is processed by the serine protease HtrA2/Omi’ is available at http://www.cell.com/molecular-cell/fulltext/S1097-2765(09)00954-X

For more information or an interview with Dr Jorg Hartkamp, contact Media Relations Officer Mikaela Sitford on 0161 275 2111, 07768 980942 or Mikaela.Sitford@manchester.ac.uk

Mikaela Sitford | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht Cloud Formation: How Feldspar Acts as Ice Nucleus
09.12.2016 | Karlsruher Institut für Technologie

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>