Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop new method to identify glycosylated proteins

28.05.2010
Various processes in our body are controlled by subsequent changes of proteins. Therefore, the identification of such modifications is essential for the further exploration of our organism. Now, scientists of the Max Planck Institute of Biochemistry in Martinsried, Germany, have made a crucial contribution to this: Using a new method, they have been able to identify more than 6,000 glycosylated protein sites in different tissues and have thus established an important basis for the better understanding of all life processes (Cell, May 28, 2010).

Many biological mechanisms like immune response, apoptosis or pathogenesis of diseases are based on the subsequent transformation of single components of proteins, the amino acids. Scientists call this process “posttranslational protein modification”. Although the technologies in proteomics have developed rapidly in the last years, until now the identification of such modified proteins was only possible with limitations.

Particularly, the transformation of proteins by glycosylation – carbohydrates binding to single amino acids – has been widely unexplored. But exactly this process is one of the most important mechanisms for the transformation of proteins and plays an important role in the formation of organs and organisms. When errors occur during the protein modification or in case it takes place in an unregulated way, this can contribute to diseases like Alzheimer’s disease or Creutzfeldt-Jakob disease.

Now, scientists of the Max Planck Institute of Biochemistry in the research department “Proteomics and Signal Transduction”, headed by Matthias Mann, have been able to shed light on the dark: They developed a method based on mass spectrometry that allows the identification of N-glycosylated protein sites in different tissues in a highly efficient way. N-glycosylation is a specific type of glycosylation, during which the carbohydrates bind on a certain component of a protein, the amino acid asparagine (abbreviated with “N”).

The new method is based on a filter technique which offers the possibility to extract also poorly accessible proteins from biological samples. The scientists combined this method with the application of high-resolution mass spectrometers whereby they were able to identify 6,367 N-glycosylated protein sites. Furthermore, they derived novel recognition sequence patterns for N-glycosylation.

These findings constitute an important progress in proteomics, because they help to understand the processes inside of the human body even better. Moreover, they could play an essential role for the investigation of diseases. For example, the scientists managed to identify some modified protein sites which are associated with different illnesses: They discovered N-glycosylated sites, unknown up to now, on proteins which play an important role in Alzheimer’s disease. Because N-glycosylation is involved in many processes which are going wrong in Alzheimer’s disease, scientists suspect that this type of protein modification directly causes the disease or, at least, influences its course crucially. Hence, the Max Planck scientists hope that the results of this study could contribute to the further investigation of diseases like Alzheimer’s. [UD]

Original Publication:

D. Zielinska, F. Gnad, J. Wisniewski, M. Mann:
Precision Mapping of an In Vivo N-Glycoproteome Reveals Rigid Topological and Sequence Constraints.

Cell, May 28, 2010.

Contact:

Prof. Dr. Matthias Mann
Proteomics and Signal Transduction
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
mmann@biochem.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Phone ++49/89-8578-2824
E-mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/en/news/index.html
http://www.biochem.mpg.de/mann

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>