Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop new method to identify glycosylated proteins

28.05.2010
Various processes in our body are controlled by subsequent changes of proteins. Therefore, the identification of such modifications is essential for the further exploration of our organism. Now, scientists of the Max Planck Institute of Biochemistry in Martinsried, Germany, have made a crucial contribution to this: Using a new method, they have been able to identify more than 6,000 glycosylated protein sites in different tissues and have thus established an important basis for the better understanding of all life processes (Cell, May 28, 2010).

Many biological mechanisms like immune response, apoptosis or pathogenesis of diseases are based on the subsequent transformation of single components of proteins, the amino acids. Scientists call this process “posttranslational protein modification”. Although the technologies in proteomics have developed rapidly in the last years, until now the identification of such modified proteins was only possible with limitations.

Particularly, the transformation of proteins by glycosylation – carbohydrates binding to single amino acids – has been widely unexplored. But exactly this process is one of the most important mechanisms for the transformation of proteins and plays an important role in the formation of organs and organisms. When errors occur during the protein modification or in case it takes place in an unregulated way, this can contribute to diseases like Alzheimer’s disease or Creutzfeldt-Jakob disease.

Now, scientists of the Max Planck Institute of Biochemistry in the research department “Proteomics and Signal Transduction”, headed by Matthias Mann, have been able to shed light on the dark: They developed a method based on mass spectrometry that allows the identification of N-glycosylated protein sites in different tissues in a highly efficient way. N-glycosylation is a specific type of glycosylation, during which the carbohydrates bind on a certain component of a protein, the amino acid asparagine (abbreviated with “N”).

The new method is based on a filter technique which offers the possibility to extract also poorly accessible proteins from biological samples. The scientists combined this method with the application of high-resolution mass spectrometers whereby they were able to identify 6,367 N-glycosylated protein sites. Furthermore, they derived novel recognition sequence patterns for N-glycosylation.

These findings constitute an important progress in proteomics, because they help to understand the processes inside of the human body even better. Moreover, they could play an essential role for the investigation of diseases. For example, the scientists managed to identify some modified protein sites which are associated with different illnesses: They discovered N-glycosylated sites, unknown up to now, on proteins which play an important role in Alzheimer’s disease. Because N-glycosylation is involved in many processes which are going wrong in Alzheimer’s disease, scientists suspect that this type of protein modification directly causes the disease or, at least, influences its course crucially. Hence, the Max Planck scientists hope that the results of this study could contribute to the further investigation of diseases like Alzheimer’s. [UD]

Original Publication:

D. Zielinska, F. Gnad, J. Wisniewski, M. Mann:
Precision Mapping of an In Vivo N-Glycoproteome Reveals Rigid Topological and Sequence Constraints.

Cell, May 28, 2010.

Contact:

Prof. Dr. Matthias Mann
Proteomics and Signal Transduction
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
mmann@biochem.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Phone ++49/89-8578-2824
E-mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/en/news/index.html
http://www.biochem.mpg.de/mann

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel 3-D printing technique yields high-performance composites

16.01.2018 | Materials Sciences

New application for acoustics helps estimate marine life populations

16.01.2018 | Life Sciences

Fast-tracking T cell therapies with immune-mimicking biomaterials

16.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>