Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists design new drug type to kill lymphoma cells

11.05.2010
Three researchers who are recipients of a collaborative grant from the Samuel Waxman Cancer Research Foundation have developed a new type of drug designed to kill non-Hodgkin lymphoma tumor cells. The breakthrough could lead to potential non-toxic therapies for cancer patients.

The Foundation-funded investigators include Ari Melnick, M.D., of Weill Cornell Medical College, Alexander MacKerell, Ph.D., of the University of Maryland and Gilbert Privé, Ph.D., of the University of Toronto. The researchers, who published their findings in the April issue of Cancer Cell, have identified a drug that targets an oncogene known as BCL6.

BCL6 functions as a master regulatory protein. "It's a protein that controls the production of thousands of other genes," said Dr. Melnick, an associate professor of medicine at Weill Cornell Medical College in New York City. "Because of that, it has a very profound impact on cells and is required for lymphoma cells to survive and multiply."

BCL6 causes the majority of diffuse large B cell lymphomas, the most common form of non-Hodgkin lymphoma. Currently, about 60 percent of diffuse large B cell lymphomas can be cured with chemo-immunotherapy, said Dr. Melnick. "The hope is that we can improve that to a higher percent, and in the long term reduce the need for chemotherapy," he added.

Traditional cancer drugs target enzymes, which have small pockets on their surfaces that can be blocked with molecules. Until now, pharmaceutical companies have been reluctant to create drugs that target a protein like BCL6 because they function through a different mechanism involving interactions with cofactor proteins involving extensive protein surfaces. "And because the real estate covered by these interactions is so large, the drug companies have viewed these as being not druggable targets," said Dr. Melnick.

He and his colleagues were able to identify a "hot spot" on BLC6 that they predicted would play a critical role in protein interactions. They showed that their BCL6 inhibitor drug was specific to BCL6, and did not block other master regulatory proteins. The drug had powerful lymphoma killing activity and yet was non-toxic to normal tissues. "This is the first time a drug of this nature has been designed and it shows that it's not actually impossible to target factors like BCL6," he said.

Emerging data from other investigators suggests that BCL6 is important in many other tumor types, including forms of leukemia.

"The Samuel Waxman Cancer Research Foundation has always supported the collaborative work of scientists, funding innovative cancer research grants," said Samuel Waxman, M.D., the scientific director of the Foundation. "The Foundation has supported the work of Alexander MacKerell, Ari Melnick and Gilbert Privé for a number of years because we believe their work highlights the critical and important mission of our organization—that collaboration can lead to potential effective cures."

About the Samuel Waxman Cancer Research Foundation

The Samuel Waxman Cancer Research Foundation is an international organization dedicated to curing and preventing cancer. The Foundation is a pioneer in cancer research, focusing on uncovering the causes of cancer and reprogramming cancer cells.

We dedicate ourselves to delivering tailored, minimally toxic treatments to patients. Our mission is to eradicate cancer by bridging the gap between lab science and the patient.

Through our collaborative group of world-class scientists, the Institute Without Walls, investigators share information and tools to speed the pace of cancer research. Since its inception in 1976, the SWCRF has awarded more than $70 million to support the work of more than 170 researchers across three continents.

Jenny Song | EurekAlert!
Further information:
http://www.waxmancancer.org

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>