Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists design new drug type to kill lymphoma cells

11.05.2010
Three researchers who are recipients of a collaborative grant from the Samuel Waxman Cancer Research Foundation have developed a new type of drug designed to kill non-Hodgkin lymphoma tumor cells. The breakthrough could lead to potential non-toxic therapies for cancer patients.

The Foundation-funded investigators include Ari Melnick, M.D., of Weill Cornell Medical College, Alexander MacKerell, Ph.D., of the University of Maryland and Gilbert Privé, Ph.D., of the University of Toronto. The researchers, who published their findings in the April issue of Cancer Cell, have identified a drug that targets an oncogene known as BCL6.

BCL6 functions as a master regulatory protein. "It's a protein that controls the production of thousands of other genes," said Dr. Melnick, an associate professor of medicine at Weill Cornell Medical College in New York City. "Because of that, it has a very profound impact on cells and is required for lymphoma cells to survive and multiply."

BCL6 causes the majority of diffuse large B cell lymphomas, the most common form of non-Hodgkin lymphoma. Currently, about 60 percent of diffuse large B cell lymphomas can be cured with chemo-immunotherapy, said Dr. Melnick. "The hope is that we can improve that to a higher percent, and in the long term reduce the need for chemotherapy," he added.

Traditional cancer drugs target enzymes, which have small pockets on their surfaces that can be blocked with molecules. Until now, pharmaceutical companies have been reluctant to create drugs that target a protein like BCL6 because they function through a different mechanism involving interactions with cofactor proteins involving extensive protein surfaces. "And because the real estate covered by these interactions is so large, the drug companies have viewed these as being not druggable targets," said Dr. Melnick.

He and his colleagues were able to identify a "hot spot" on BLC6 that they predicted would play a critical role in protein interactions. They showed that their BCL6 inhibitor drug was specific to BCL6, and did not block other master regulatory proteins. The drug had powerful lymphoma killing activity and yet was non-toxic to normal tissues. "This is the first time a drug of this nature has been designed and it shows that it's not actually impossible to target factors like BCL6," he said.

Emerging data from other investigators suggests that BCL6 is important in many other tumor types, including forms of leukemia.

"The Samuel Waxman Cancer Research Foundation has always supported the collaborative work of scientists, funding innovative cancer research grants," said Samuel Waxman, M.D., the scientific director of the Foundation. "The Foundation has supported the work of Alexander MacKerell, Ari Melnick and Gilbert Privé for a number of years because we believe their work highlights the critical and important mission of our organization—that collaboration can lead to potential effective cures."

About the Samuel Waxman Cancer Research Foundation

The Samuel Waxman Cancer Research Foundation is an international organization dedicated to curing and preventing cancer. The Foundation is a pioneer in cancer research, focusing on uncovering the causes of cancer and reprogramming cancer cells.

We dedicate ourselves to delivering tailored, minimally toxic treatments to patients. Our mission is to eradicate cancer by bridging the gap between lab science and the patient.

Through our collaborative group of world-class scientists, the Institute Without Walls, investigators share information and tools to speed the pace of cancer research. Since its inception in 1976, the SWCRF has awarded more than $70 million to support the work of more than 170 researchers across three continents.

Jenny Song | EurekAlert!
Further information:
http://www.waxmancancer.org

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>