Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists decode mystery sequences involved in gene regulation

11.07.2013
First-ever compendium of RNA sequences will be important guide to understanding the root of genetic diseases

Every cell in an organism's body has the same copy of DNA, yet different cells do different things; for example, some function as brain cells, while others form muscle tissue. How can the same DNA make different things happen? A major step forward is being announced today that has implications for our understanding of many genetically-linked diseases, such as autism.

Scientists know that much of what a gene does and produces is regulated after it is turned on. A gene first produces a molecule called RNA, to which tiny proteins called RNA binding proteins (RBPs) bind and control its fate. For instance, some of these proteins cut out parts of the RNA molecule so that it makes a particular protein, while other RBPs help destroy the RNA before it even produces a protein.

But these mechanisms are not well understood because the RNA sequences, which the RBPs bind to, have been so difficult to decipher. To fully understand gene regulation (and disregulation, as in the case of disease), scientists have needed to employ advanced lab techniques and data analysis to identify the patterns of the RNA sequences.

This gap in knowledge motivated a team of researchers co-led by Senior Fellow Tim Hughes (University of Toronto and the Canadian Institute for Advanced Research) to produce the first-ever compendium of RNA-binding sequences, which was published in Nature on July 11, 2013.

"It took us a long time to generate and analyze the data," explains Hughes. "After spending years developing and perfecting a method, we started looking at all the proteins in humans, fruit flies and other complex organisms that look like they may bind RNA and found which sequences they like to bind to. Our compendium of RNA-binding sequences will become a resource for researchers in this field, and will be especially useful in human genetic analysis."

The team found that humans and fruit flies have similar RBPs, since they derive from a common ancestor, and that in many cases they essentially bind the same sequences. The researchers anticipate that this is the case for proteins in other organisms.

"We looked at just over 200 proteins in total, but can probably infer the preference for tens of thousands of proteins in many other organisms," says Hughes.

In addition, many of the sequences similar across species were at the end of the RNA transcript, which is a region associated with regulation of RNA decay or movement of the RNA to another part of the cell. "This indicates that there is probably more regulation of gene expression itself at the level of stability or destruction of RNA," explains Hughes.

One of the major insights that came out of the team's analyses was about a well-studied protein called RBFOX1, which was already known to have a function in regulating RNA splicing and to be decreased in autism. The team's findings suggest that RBFOX1 has a role in regulating the expression level of nervous-system-related genes in brains with autism, and that it does so by making RNA more stable.

The underlying causes of disease are more complicated than a single gene not working right, says Hughes. He anticipates that the team's compendium will be useful in human genetic analysis.

"What often happens is that scientists identify a genetic variation associated with a disease, but then they don't understand why it leads to the disease. What exactly do these sequence changes cause? If the sequence is in a regulatory region of the RNA, then with our compendium, other scientists will be able to see what protein binds to it. This will give them a better idea of what is being disrupted."

The study was a large collaborative effort, supported in part by CIFAR, that involved Senior Fellows Brendan Frey (U of T) and Andrew Fraser (U of T) and Global Scholar Alumnus Matthew Weirauch (Cincinnati Children's Hospital Medical Center) in CIFAR's Genetic Networks program. Hamed Najafabadi (U of T), a postdoctoral fellow who performed much of the analysis in this study, was partially funded by CIFAR.

"Members of the Genetic Networks program have motivated us to look at roles for RNA-binding proteins causing disregulation of gene expression in disease," says Hughes. "We anticipate that this new knowledge will be valuable to other program members working on specific disorders."

The next steps for the team are to expand their compendium to encompass all complex organisms.

Frey also hopes to take these findings further to build models that will more accurately describe observed gene expression patterns.

"My research focuses on deciphering the regulatory sequences in DNA, which ultimately shape the fate of an RNA molecule," explains Frey. "I hope to take the RNA-binding sequences identified in this paper and use them as tokens to figure out how they act in a regulatory fashion. This will help us better understand human disease by providing insights into how a mutation in DNA affects regulation."

This work was supported by the U.S. National Institutes of Health, Canadian Institutes of Health Research, National Science and Engineering Research Council of Canada, CIFAR, and Human Frontier Science Program.

For more information, or to arrange an interview with Tim Hughes, please contact:

Margaret Mroziewicz at (416) 971-4876 or mmroziewicz@cifar.ca

About CIFAR

Established in 1982, CIFAR is an independent research institute comprising nearly 400 researchers from more than 100 academic institutions in 16 countries. The Genetic Networks program is one of CIFAR's multidisciplinary global research networks that is devoted to discovering how genes interact with one another, research that could identify the root causes of many complex genetic diseases, and lead to new treatments and preventive measures.

Margaret Mroziewicz | EurekAlert!
Further information:
http://www.cifar.ca

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>