Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Create First Realistic 3D Reconstruction of Brain Circuit

08.12.2011
Researchers from the lab of Nobel laureate Bert Sakmann, MD, PhD at the Max Planck Florida Institute (MPFI) are reporting that, using a conceptually new approach and state-of-the-art research tools, they have created the first realistic three-dimensional diagram of a thalamocortical column in the rodent brain.

A vertically organized series of connected neurons that form a brain circuit, the cortical column is considered the elementary building block of the cortex, the part of the brain that is responsible for many of its higher functions.

This achievement is the first step toward creating a complete computer model of the brain, and may ultimately lead to an understanding of how the brain computes and how it goes awry in neurological, neurodevelopmental and psychiatric disorders. The study is published online in the journal Cerebral Cortex.

“This is the first complete 3D reconstruction of a realistic model of a cortical column,” said Marcel Oberlaender, PhD, first author on the paper. “This is the first time that we have been able to relate the structure and function of individual neurons in a live, awake animal, using complete 3D reconstructions of axons and dendrites. By creating this model, we hope to begin understanding how the brain processes sensory information and how this leads to specific behaviors.”

The electrically excitable axon extends from the body of the neuron (brain cell) and often gives rise to many smaller branches before ending at nerve terminals. Dendrites extend from the neuron cell body and receive messages from other neurons.

In addition to recreating the structure of the cortical column, the study also sheds significant light on the function of its constituent neurons, and the relationship between their functionality and structure. In looking at neurons’ response to sensory stimulation, the researchers discovered that sensory-evoked activity in some of the cells can be directly correlated with their structure and connectivity, which marks a first step toward understanding basic organizational principles of the brain.

Working with both awake and anesthetized rats, and also examining stained brain slices, the neuroscientists used sophisticated new light microscopy as well as custom designed tools to examine 15,000 neurons of nine identified cell types. Using a painstaking, six-step process, the researchers identified and reconstructed the column’s constituent parts using sophisticated software and a range of other new state-of-the-art tools and processes.

Described in a related paper co-authored by Drs. Sakmann and Oberlaender, these new methods, which were developed in part at the Max Planck Florida Institute, allow researchers, for the first time, to simulate electrical signaling in a computer model at subcellular and millisecond resolution.

“We can now quantify the number of neurons of each cell type, their three-dimensional structure, connectivity within these networks, and response to sensory stimulation, in both an anesthetized and awake animal,” said Dr. Oberlaender. “Such a quantitative assessment of cortical structure and function is unprecedented and marks a milestone for future studies on mechanistic principles that may underlie signal flow in the brain, during such functions as decision making.”

Dr. Oberlaender is part of the Max Planck Florida Institute’s Digital Neuroanatomy group, led by Dr. Bert Sakmann. The group focuses on the functional anatomy of circuits in the cerebral cortex that form the basis of simple behaviors (e.g. decision making). One of the group’s most significant efforts is a program dedicated to obtaining a three-dimensional map of the rodent brain. This work will provide insight into the functional architecture of entire cortical areas, and will lay the foundation for future studies on degenerative brain diseases, such as Alzheimer's.

Dr. Oberlaender and Dr. Christiaan de Kock contributed equally to this work. Dr. de Kock is with the Neuroscience Campus Amsterdam, VU University Amsterdam, the Netherlands. The research team also included scientists from Max Planck Institute for Medical Research (Heidelberg, Germany), Columbia University and Zuse Institute (Berlin).

About the Max Planck Florida Institute
The first institute established by Germany’s prestigious Max Planck Society outside of Europe, the Max Planck Florida Institute is also the first research institute of its kind in North America. MPFI seeks to provide new insight into understanding the functional organization of the nervous system, its capacity to produce perception, thought, language, memory, emotion, and action.

Neural circuits, the complex synaptic networks of the brain, hold the key to understanding who we are, why we behave the way we do, and how the debilitating effects of neurological and psychiatric disorders can be ameliorated. MPFI meets this challenge by forging links between different levels of analysis—genetic, molecular, cellular, circuit, and behavioral—and developing new technologies that make cutting edge scientific discoveries possible. For more information, visit www.maxplanckflorida.org

Dennis or Sheila Tartaglia | Max-Planck-Institute
Further information:
http://www.maxplanckflorida.org

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>