Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists crack code of critical bacterial defense mechanism

26.04.2010
Scientists have combined chemistry and biology research techniques to explain how certain bacteria grow structures on their surfaces that allow them to simultaneously cause illness and protect themselves from the body’s defenses.

The researchers are the first to reproduce a specific component of this natural process in a test tube – an essential step to fully understanding how these structures grow.

With the new method described, these and other researchers now can delve even deeper into the various interactions that must occur for these structures – called lipopolysaccharides – to form, potentially discovering new antibiotic targets along the way.

Lipopolysaccharides are composed primarily of polysaccharides – strings of sugars that are attached to bacterial cell surfaces. They help bacteria hide from the immune system and also serve as identifiers of a given type of bacteria, making them attractive targets for drugs. But before a drug can be designed to inhibit their growth, scientists must first understand how polysaccharides are developed in the first place.

“We were able to answer some of the questions about how components of this growth system do their jobs. This will allow us to more fully characterize lipopolysaccharide biosynthesis in vitro, a process which may shed light on useful targets for developing antibiotic agents,” said Robert Woodward, a graduate student in chemistry at Ohio State University and lead author of the study.

The study is published in the April 25 online edition of the journal Nature Chemical Biology.

The researchers used a harmless strain of Escherichia coli as a model for this work, which would apply to other E. coli strains and similar Gram-negative bacteria, a reference to how their cell walls are structured.

The surface of these bacteria house the lipopolysaccharide, which is a three-part molecular structure embedded into the cell membrane. Two sections of this structure are well understood, but the third, called the O-polysaccharide, has to date been impossible to reproduce.

Two significant challenges have hindered research efforts in this area: The five sugars strung together to compose this section of the molecule are difficult to chemically prepare in the lab, and one of the key enzymes that initiates the structure’s growth process doesn’t easily function in a water-based solution in a test tube.

Ohio State synthetic chemists and biochemists put their heads together to solve these two problems, Woodward said.

To produce the five-sugar chain, the researchers started with a chemically prepared building block containing a single sugar and introduced enzymes that generated a five-sugar unit from that single carbohydrate.

“The first part was done chemically, and in the second part, we used the exact same enzymes that are normally present in a bacterial cell to transform the single sugar into a five-sugar string,” Woodward said.

Once these sugars join to make a five-sugar chain, a specific number of these chains are joined together to fully form the O-polysaccharide. A protein is required to connect those chains – the protein that doesn’t respond well to the test-tube environment.

Early attempts to produce this protein in the lab resulted in clumping structures that did not function. So Woodward and colleagues produced this protein in the presence of what are known as “chaperone” proteins.

“And basically what the chaperones do is help the protein fold into its correct state. We were able to produce the desired enzyme and also were able to verify that it was functional,” Woodward said.

This protein is called Wzy. It is a sugar polymerase, or an enzyme that interacts with the five-sugar chain to begin the process of linking several five-sugar units together.

Getting this far into the process was important, but the researchers also completed one additional step to define yet another protein’s role.

Wzy connected the five-sugar chains, but it did so with no defined limit to the number of five-sugar units involved, a feature that does not match the natural process. On an actual bacterial cell wall, the length of the polysaccharide falls within a relatively narrow range of the number of chains connected.

So the scientists introduced another protein, called Wzz, to the mixture. This protein is known as a “chain length regulator.” With this protein in the mix, the lengths of the resulting polysaccharides were confined to a much more narrow range.

“We were able to replicate the exact polysaccharide biosynthetic pathway in vitro, getting the correct lengths,” Woodward said. “This is important because now you can begin to look at a whole host of other properties in the system.”

The group already started trying to answer one compelling question: whether the two proteins, Wzy and Wzz, have to interact to fully achieve formation of the polysaccharide.

“We’ve shown in some preliminary results that they do interact, but we haven’t determined whether that interaction has any functional relevance,” Woodward said.

With this knowledge in hand, researchers now have access to information about how all three parts of the lipopolysaccharide, the large biomolecule on Gram-negative bacteria cell surfaces, is formed. One thing they already knew is that the entire process takes place on an inner membrane and is then exported to the outer membrane on the cell surface.

Now that scientists can reproduce formation of the lipopolysaccharide, they can more directly characterize the export process – a step in the pathway that serves as another potential antibiotic target, Woodward noted.

This work was supported by the National Institutes of Health, including its Predoctoral Trainee Program, the China Scholarship Council, the National Cancer Institute, the National Science Foundation and the Bill & Melinda Gates Foundation.

Co-authors on the study are Wen Yi, Lei Li, Guohui Zhao, Hironobu Eguchi, Perali Ramu Sridhar, Hongjie Guo, Jing Katherine Song, Edwin Motari, Li Cai, Patrick Kelleher, Xianwei Liu, Weiqing Han, Wenpeng Zhang and Mei Li, all former or current Ohio State graduate students or postdoctoral researchers in biochemistry and chemistry; Yan Ding of Shandong University in China; and Peng George Wang, Ohio Eminent Scholar and professor of biochemistry and chemistry at Ohio State.

Contact: Robert Woodward, (614) 292-8704; woodward.69@osu.edu
Written by Emily Caldwell, (614) 292-8310; caldwell.151@osu.edu

Robert Woodward | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>