Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists clarify structural basis for biosynthesis of mysterious 21st amino acid

13.08.2010
The findings deepen our understanding of protein synthesis and lay the groundwork for advances in protein design.

Researchers at the RIKEN Systems and Structural Biology Center and the University of Tokyo have clarified the structural basis for the biosynthesis of selenocysteine (Sec), an amino acid whose encoding mechanism offers clues about the origins of the genetic alphabet. The findings deepen our understanding of protein synthesis and lay the groundwork for advances in protein design.

One of the most remarkable aspects of translation, the process whereby genetic information is converted into proteins in cells, is its universality: nucleotide triplets (“codons”) encode a set of twenty amino acids that form the building blocks for all living organisms. Selenocysteine, the “21st amino acid” whose antioxidant properties help prevent cellular damage, is a rare exception to this rule. Structurally similar to the amino acid serine (Ser) but with an oxygen atom replaced by the micronutrient selenium (Se), selenocysteine is synthesized through a complex juggling of the cell’s translational machinery whose mechanisms remain poorly understood.

Central to this multi-step process is a Sec-specific transfer RNA (tRNASec) with an unusual structure that enables it to hijack the “stop codon” UGA to allow incorporation of selenocysteine during protein synthesis. In earlier work, the researchers identified features of tRNASec that differentiate it from other tRNA, notably the peculiar structure of a domain called the D-arm, which appeared to act as an identification marker for recognition by the selenocysteine synthesis machinery. This time, the team analyzed the D-arm’s role in the interaction of tRNASec with O-phosphoseryl-tRNA kinase (PSTK), a protein whose selective phosphorylation is essential for selenocysteine encoding.

Using X-ray crystallography, the team showed for the first time that it is the unique structure of the tRNASec D-arm which enables PSTK to distinguish tRNASec from other tRNA. Reported in the August 13th issue of Molecular Cell (online August 12th), the discovery clarifies a pivotal step in selenocysteine biosynthesis, shedding new light on the mysterious 21st amino acid and the elaborate process by which it is created.

For more information, please contact:

Dr. Shigeyuki Yokoyama
RIKEN Systems and Structural Biology Center (SSBC)
Tel: +81-(0)45-503-9196 / Fax: +81-(0)45-503-9195
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: koho@riken.jp
Reference:
Shiho Chiba, Yuzuru Itoh, Shun-ichi Sekine and Shigeyuki Yokoyama. Structural Basis for the Major Role of O-Phosphoseryl-tRNA Kinase in the UGA-Specific Encoding of Selenocysteine. Molecular Cell 39: 1-11. August 13, 2010. DOI: 10.1016/j.molcel.2010.07.018

Journal information
Molecular Cell

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>