Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Chip Away at the Mystery of What Lives in Our Mouths

18.02.2014
Sequencing of harmless oral bacterium offers insights about its disease-causing relative

Scientists have pieced together sections of DNA from 12 individual cells to sequence the genome of a bacterium known to live in healthy human mouths.

With this new data about a part of the body considered “biological dark matter,” the researchers were able to reinforce a theory that genes in a closely related bacterium could be culprits in its ability to cause severe gum disease.

Why the dark matter reference? More than 60 percent of bacteria in the human mouth refuse to grow in a laboratory dish, meaning they have never been classified, named or studied. The newly sequenced bacterium, Tannerella BU063, is among those that to date have not successfully been grown in culture – and its genome is identified as “most wanted” by the Human Microbiome Project.

The federal Human Microbiome Project aims to improve research about the microbes that play a role in health and disease. Those 12 cells of BU063 are a good example of the complexity of life in the mouth: They came from a single healthy person but represented eight different strains of the bacterium.

BU063 is closely related to the pathogen Tannerella forsythia, a bacterium linked to the gum disease periodontitis. Despite being “cousins,” this research revealed that they have clear differences in their genetic makeup.

Those genes lacking in BU063 but present in forsythia – meaning they are a likely secret behind forsythia’s virulence – are now identified as good targets for further study, researchers say.

“One of the tantalizing things about this study was the ability to do random searches of other bacteria whose levels are higher in periodontitis,” said Clifford Beall, research assistant professor of oral biology at The Ohio State University and lead author of the study. “We looked for genes that were present in these bacteria and forsythia and not in BU063. There is one particular gene complex in a whole list of these periodontitis-related bacteria that could be involved with virulence.”

The research is published in the journal PLOS ONE.

Periodontitis results when extensive inflammation or infection of the gums spreads beyond the gums to damage structures that support the teeth, including bone. Pockets that form between the gums and teeth are filled with different kinds of bacteria. Treatment typically involves deep cleaning or surgery to remove these infected pockets. Because multiple bacteria are associated with the disease, antibiotics have not been considered effective for treatment.

And though many bacteria in these pockets have been collected and at least partially identified, their characteristics remain a mystery.

“We think some of the gene differences we’ve found in this study are important, but it’s still not clear what all these genes do, meaning we still don’t know why certain bacteria in periodontitis are pathogenic in the first place. Basically the circumstances surrounding periodontitis aren’t very well understood,” Beall said.

“There are a lot of different bacteria that are higher in periodontitis lesions, but we don’t see every one of those bacteria in every case of periodontitis. So it’s hard to see a drug affecting one bacteria being very successful.”

Beall’s colleagues at the Oak Ridge National Laboratory collected a sample of oral material from under the gums of a single healthy person for this study. There, researchers sorted out 12 single BU063 bacterial cells and created extra copies of each cell’s DNA before sending them to Beall at Ohio State.

Beall sequenced the genomes of all 12 cells and, using genome segments from single or groups of cells, constructed an entire genome for BU063.

Completing that genome was a feat in itself, but the larger purpose was learning more about forsythia, he noted. This pathogenic bacterium can be grown in the lab and tested against mammal and human cells, but the reason behind its virulence hasn’t been confirmed.

The scientists discovered that while BU063’s genome is more similar to forsythia’s than any other known genome, the two have a 44 percent difference in gene content.

This research also supported an existing theory that three genes could be related to forsythia’s ability to cause disease because these genes are missing from BU063. Two have potential to damage tissue and inactivate the immune response and the third is a cell-surface molecule that interacts with human cells.

In a comparison with additional organisms linked to chronic periodontitis, Beall also identified a gene cluster present in forsythia and these other pathogens that is missing from the BU063 genome.

The findings contribute to the Human Microbiome Project, which initially focused on characterizing microbial communities in the mouth as well as other areas of the body.

Beall noted that he was surprised to find that the 12 cells from a single mouth represented eight different strains of the BU063 species of bacteria.

“We expect people to have 150 to 200 species of bacteria in their mouths, but they may have all these layers underneath of 20 little variants – at least it’s a possibility based on this organism,” he said. “This may go to show that our microbiome is even more complicated than we’ve previously thought.”

The research was supported by the National Institute of Dental and Craniofacial Research and the National Human Genome Research Institute.

Co-authors include Daniel Dayeh and Eugene Leys of oral biology and Ann Griffen of pediatric dentistry and community oral health, all in Ohio State’s College of Dentistry, and Alisha Campbell (now at Northwest Missouri State University) and Mircea Podar of Oak Ridge National Laboratory and the University of Tennessee.

Contact: Clifford Beall, (614) 292-9306; Beall.3@osu.edu

Emily Caldwell | Newswise
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>