Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist holds promise for novel oral anti-diabetic drugs

10.06.2009
Promise is held out for the development of novel oral drugs to control blood glucose levels in diabetes patients as the result of research by a Hebrew University of Jerusalem scientist.

For his groundbreaking work, Prof. Shlomo Sasson of the Hebrew University School of Pharmacy has been named one of the winners this year of the Hebrew University’s Kaye Innovation Awards.

Type 2 diabetes is a worldwide epidemic, predicted to affect over 380 million people within the next 20 years. This disease is characterized by high blood glucose levels that lead to severe complications in various organs and tissues. The disease usually results from insufficient secretion and function of the pancreatic hormone insulin that regulates glucose metabolism in peripheral tissues, such as skeletal muscles, fatty tissues and the liver.

Pharmacological anti-diabetic therapy aims at a strict regulation of blood glucose levels to prevent such complications. However, because current oral anti-diabetic drugs often fail, many patients need daily injections of insulin to control their glucose metabolism and reduce blood glucose levels.

The global diabetes therapy market is estimated at around US$26.3 billion in 2009. By 2013 the market is expected to grow to around US$34.5 billion.

Recent work on the molecular mechanisms that regulate glucose transport in skeletal muscles has identified new potential targets for anti-diabetic drugs.

In his research, Sasson, with his colleagues and students, made a unique discovery that high levels of the carbohydrate D-xylose increased the rate of glucose entry into skeletal muscle cells in a non-insulin-dependent manner. They then used it as a prototype molecule for the planning and synthesis of chemical derivatives that may act as potential drugs to lower blood glucose in type 2 diabetic patients.

Some of these derivatives increased significantly the rate of glucose transport in skeletal muscles at very low concentrations. This effect was not achieved by mimicking the classical pathway of insulin action, but by activating the enzyme AMP-activated protein kinase (AMPK). When activated, this enzyme increases the rate of glucose transport in skeletal muscles in the absence of insulin. Therefore, compounds that activate this enzyme can be effective in insulin resistant type 2 diabetic patients or in those that fail to respond to conventional drug therapy. This makes AMPK an extremely attractive target in the development of novel anti-diabetic drugs.

One of the lead compounds developed by Sasson and colleagues effectively reduced blood glucose levels in various animal models of diabetes. This discovery indicates the great potential of these novel derivatives to serve as the basis for development of new drugs to normalize blood glucose levels in diabetic patients.

The Kaye Innovation Awards have been given annually since 1994. Isaac Kaye of England, a prominent industrialist in the pharmaceutical industry, established the awards to encourage faculty, staff and students of the Hebrew University to develop innovative methods and inventions with good commercial potential which will benefit the university and society. This year’s Kaye Awards were presented on June 9 during the Hebrew University Board of Governors meeting in Jerusalem.

For further information:
Jerry Barach, Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>