Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The scientific side of steroid use and abuse

07.08.2012
Leslie Henderson is concerned about steroid abuse, not necessarily by sports luminaries like Barry Bonds and Mark McGwire, but rather by adolescents.

"There is this disconnect among young people that somehow your emotions, your thought processes—things that have to do with your brain—are separate and different from what steroids may be doing to your body—your muscles, your heart, or your liver, or anything like that," says Henderson, a professor of physiology and neurobiology, and of biochemistry at the Geisel School of Medicine at Dartmouth. She is also the senior associate dean for faculty affairs at Geisel.

Henderson reports that websites targeting steroid users often acknowledge that steroids can affect your body—that's why they are taken—or they can make you aggressive. However, they do not say anything about changing the way your brain works. "Teenagers need to recognize that these drugs actually do things to your brain, and your behavior comes from your brain," she says.

The drugs of concern are anabolic-androgenic steroids (AAS), which are synthetic derivatives of testosterone, originally designed to provide enhanced anabolic (tissue-building) potency with negligible androgenic (masculinizing) effects, according to Henderson and her long-time Dartmouth collaborator Ann Clark, a professor in the Department of Psychological and Brain Sciences.

"Although originally developed for clinical use, AAS administration is now predominantly one of abuse, and the medical benefits of low doses of AAS stand in sharp contrast to the potential health risks associated with the excessive doses self-administered by athletes," they write in a 2003 paper.

In addition to the danger implicit in high dosages is the range of uncontrolled variability in the composition of these illicit synthetics. "Because of their chemical modifications they can also directly interact with neurotransmitter receptors in the brain to change the way they function," says Henderson. These changes are reflected in manifestations of anxiety, as seen in Henderson's laboratory experiments.

However, little regard is given to these potential dangers when the primary objective is a competitive edge in athletic pursuits. Compounding these caveats are the implications of abuse at an early age.

Studies have shown there are "critical periods"—periods of time during adolescence when exposure to steroids can impose permanent changes in both brain organization and function, leading to physiological and psychiatric effects that may still be prevalent even in middle age. The age at which you take them also affects their persistence. From studies using rodents as an animal model, other investigators have also found that, "if you take steroids as an adolescent, those effects are much longer lasting in terms of their negative effects on behavior, especially aggression, than if you take them as an adult," Henderson comments.

In her laboratory work, Henderson has looked at three major behavioral systems typically associated with steroid abuse—reproduction, aggression in males, and anxiety in both sexes.

"We did a lot of work looking at the neural control of reproduction and regions of the brain that were affected by chronic steroid abuse, as well as the transfer centers in the brain that were affected acutely by exposure to these steroids," says Henderson. "More recently, we've also looked at the effects of these steroids on anxiety, elucidating a biochemical pathway that is integral to this."

When Henderson says "we" in reference to her research, she means the "royal we." As a senior associate dean in the medical school, her hours at the bench are expectedly limited. "However, our lab is still active. In fact the past couple years we've had probably our best and most high-profile publications," says Henderson. "Right now the lab has a senior postdoc, a graduate student, and my lab manager, and they are doing all the heavy lifting." Donna Porter is the laboratory manager working with Postdoctoral Associate Joseph Oberlander and graduate student Marie Onakomaiya.

As if she were not busy enough, Henderson is committed to active outreach—bringing science to the public. In November, she is scheduled to participate in a local "Science Café." These are interactive events that take place in casual settings such as pubs and coffeehouses, are open to everyone, and feature an engaging conversation with a scientist about a particular topic.

"It is just something that for me as a scientist I think is incredibly important," Henderson asserts. "We take a lot of taxpayer dollars, and if we can't go out and make what we're doing relevant to the people that are supporting us, we shouldn't be doing what we are doing."

Amy Olson | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>