Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In scientific first, researchers visualize naturally occurring mRNA

17.01.2011
In a technique that could eventually shed light on how gene expression influences human disease, scientists at Albert Einstein College of Medicine of Yeshiva University have for the first time ever successfully visualized single molecules of naturally-occurring messenger RNA (mRNA) transcribed in living mammalian cells. The scientific achievement is detailed in the January 16 online edition of Nature Methods.

Gene expression involves transcribing a gene's DNA into molecules of mRNA. These molecules then migrate from a cell's nucleus into the cytoplasm, where they serve as blueprints for protein construction.

Robert Singer, Ph.D., codirector of the Gruss Lipper Biophotonics Center and professor and cochair of anatomy and structural biology, was senior author of the paper. Working with his colleagues, he generated a transgenic mouse in which genes coding for the structural protein beta actin would, when expressed, yield fluorescently labeled mRNA. Beta actin mRNA is a highly expressed molecule found in all mammalian tissues.

The technique used by the Einstein researchers should be applicable for monitoring the expression of any gene of interest. Prior to this study, Einstein researchers had monitored mRNA molecules transcribed by artificial genes.

"Our report is the first demonstration that our technique can be used to visualize the expression of an essential gene in mammalian cells," said Timothée Lionnet, Ph.D., a research fellow in Dr. Singer's lab and lead author of the Nature Methods paper. "We can study beta actin RNA molecules over their life cycle in a variety of cell types and discover where they are distributed within the cell. This has important consequences for human disease like cancer, since the way molecules of mRNA are localized within tumor cells correlates with the ability of these cells to spread, or metastasize."

The study, "A transgenic mouse for in vivo detection of endogenous labeled mRNA," will be published in the January 16 online edition of Nature Methods. Other Einstein scientists involved in the study were Kevin Czaplinski, Amber Wells, Ph.D., Jeffrey Chao, Ph.D., Hye Yoon Park, Valeria de Turris and Melissa Lopez-Jones.

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. During the 2009-2010 academic year, Einstein is home to 722 M.D. students, 243 Ph.D. students, 128 students in the combined M.D./Ph.D. program, and approximately 350 postdoctoral research fellows. The College of Medicine has 2,775 fulltime faculty members located on the main campus and at its clinical affiliates. In 2009, Einstein received more than $155 million in support from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Through its extensive affiliation network involving five medical centers in the Bronx, Manhattan and Long Island - which includes Montefiore Medical Center, The University Hospital and Academic Medical Center for Einstein - the College of Medicine runs one of the largest post-graduate medical training programs in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training. For more information, please visit www.einstein.yu.edu

Kim Newman | EurekAlert!
Further information:
http://www.einstein.yu.edu

Further reports about: Medical Wellness Medicine Nature Immunology RNA RNA molecule cell type

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>