Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The way of science

02.04.2013
Surprising findings in mitochondrial biology change long-standing ideas on the protein MTERF1

New findings in mitochondrial biology thoroughly change the idea scientists had for 20 years on the role and importance of the protein MTERF1. For the first time, Max Planck researcher Mügen Terzioglu investigated in vivo what was up to now only explored in cell culture. Using the mouse as a model organism, she made a surprising discovery:

MTERF1 does after all not play the key role in mitochondrial transcription and translation that was hitherto ascribed to it. Terzioglu’s findings will change the way we look at the regulation of mitochondrial function in the cell.

With her study, the young researcher demonstrates the way science often works: Long-standing research findings might be overthrown by surprising new insights, thus necessitating future projects with regard to related questions to take on a whole new direction. Mügen Terzioglu is a researcher in the department „Mitochondrial Biology“, headed by Director Nils-Göran Larsson at the Max Planck Institute (MPI) for Biology of Ageing in Cologne. She carried out her project with an international team of scientists at the MPI and at the Karolinska Institute in Stockholm.

Proteins are the “work horses“ of an organism. They perform a variety of different processes, for instance regulating genes, controlling metabolism or making cells perform specialized functions. MTERF1 is such a work horse, carrying out its tasks in the mitochondria, also known as the “power houses“ of the cell since they supply energy by converting components in the food we eat to ATP. And while the genetic blueprint of a living organism is largely held in the cell nucleus, the mitochondria carry their own hereditary information, also in the form of DNA. In this context, MTERF1’s special role is to act as a so-called “mitochondrial transcription termination factor“: It defines the right stopping place when it comes to transcribe a section on the DNA into RNA. RNA in turn delivers the genetic information to the ribosomes, which can be described as the “protein-making factories“ of the cell: They synthesize proteins according to the instructions held by the RNA.

“Up to now, the role of MTERF1 was only investigated in vitro, using cell culture. And for two decades, this protein was thought to play a crucial role in the regulation of transcription, eventually acting as a key regulator for mitochondrial protein synthesis in mammals“, explains Mügen Terzioglu. “However, by engineering an appropriate mouse model for the first time, we have now learned that this is not the case. That was actually quite a surprise to us.“ It also illustrates the fact that in vitro systems like cell culture can only to a certain extent represent a natural physiological condition. Consequently, the insights gained in vitro must always be verified in vivo.

Mügen Terzioglu’s findings will change the way we look at proteins and understand their roles in the cell. In particular, a new perspective opens up to better understand the regulation in mitochondrial transcription and translation as well as the stability of the mitochondrial transcripts and their metabolism.

Original publication:
Mügen Terzioglu, Benedetta Ruzzenente, Julia Harmel, Arnaud Mourier, Elisabeth Jemt, Marcela Davila Lopez, Christian Kukat, James B. Stewart, Rolf Wibom, Caroline Meharg, Bianca Habermann, Maria Falkenberg, Claes M. Gustafsson, Chan Bae Park and Nils-Göran Larsson
MTERF1 Binds mtDNA to Prevent Transcriptional Interference at the Light-Strand Promoter but Is Dispensable for rRNA Gene Transcription Regulation
Cell Metabolism - April 02, 2013 (Epub ahead of print: Apr 02, 2013)

Contact:
Author: Dr. Mügen Terzioglu
Max Planck Institute for Biology of Ageing, D-Cologne
E-mail: mugen.terzioglu@age.mpg.de

Press & Public Relations: Sabine Dzuck
Tel.: +49 (0)221 379 70 304
Mobile: +49 (0)151 628 03 539
E-mail: sabine.dzuck@age.mpg.de

Sabine Dzuck | Max-Planck-Institut
Further information:
http://www.age.mpg.de

Further reports about: DNA MPI MTERF1 Max Planck Institute RNA ageing synthetic biology

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>