Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scavenger cells accomplices to viruses

21.07.2011
Mucosal epithelia are well-protected against pathogenic germs.

However, individual viruses, such as the HI virus, still manage to enter the body via the mucous membrane somehow. Cell biologists from the University of Zurich have now identified a new infection mechanism, demonstrating that the viruses use the body’s own scavenger cells for the infection. The new findings are important for cancer-gene therapy and the development of anti-viral medication.

Mucosal epithelia do not have any receptors on the outer membrane for the absorption of viruses like hepatitis C, herpes, the adenovirus or polio, and are thus well-protected against pathogenic germs. However, certain viruses, such as the human immunodeficiency virus HIV, still manage to enter the body via the mucous membrane. Just how this infiltration occurs on a molecular level has been a mystery.

Three hypotheses were discussed: firstly, that it’s caused by mechanical damage to the mucous membrane; secondly, the presence of previously unknown receptors on the mucous membrane cells; and, thirdly, that the viruses are smuggled in via a kind of Trojan horse. Now, for the first time, cell biologists from the University of Zurich have succeeded in identifying the infection mechanism for adenoviruses.

In the recently published online magazine Nature Communications, Verena Lütschg and cell biologists from the Institute of Molecular Biology headed by Urs Greber reveal how type-5 adenoviruses in the lung epithelia utilize an immune response triggered by the infection for the progression of the infection: Adenoviruses use scavenger cells and their subsequent production of antiviral cytokines as a door-opener for the infection of the lung epithelial cells.

Exposure of shielded receptors

Antiviral cytokines play a key role in immunological reactions and trigger inflammatory responses, for instance. They induce the epithelial cells to expose certain receptors that are shielded under normal conditions and thus activate immune cells in defense. For healthy people, an infection of the lung with type-5 adenoviruses is harmless as they merely cause a cold. Under very stressful situations or in the case of chronic respiratory diseases, however, adenoviruses can cause severe, acute infections that can sometimes be fatal.

The recently identified infection mechanism can serve as a model for how the pathogens penetrate the mucosal epithelial cells and enter the body. However, it is also crucial from a therapeutic point of view. Type-5 adenoviruses are already used very often as transport vehicles in cancer-gene therapy today. Knowing the transport route will help develop both this gene therapy and specifically acting cancer treatment further.

Literature:
Verena Lütschg, Karin Boucke, Silvio Hemmi, Urs F. Greber, Chemotactic antiviral cytokines promote infectious apical entry of human adenovirus into polarized epithelial cells, Nature Communications DOI: 10.1038/ncomms1391
Contact:
Prof. Urs Greber, University of Zurich, Institute of Molecular Biology
Tel. +41 44 635 48 41, E-Mail urs.greber@imls.uzh.ch

Beat Müller | Universität Zürich
Further information:
http://www.imls.uzh.ch

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>