Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia Researchers Find Clues to Superbug Evolution

24.09.2014

Imagine going to the hospital with one disease and coming home with something much worse, or not coming home at all.

With the emergence and spread of antibiotic-resistance pathogens, healthcare-associated infections have become a serious threat. On any given day about one in 25 hospital patients has at least one such infection and as many as one in nine die as a result, according to the Centers for Disease Control and Prevention.


Dino Vournas, Sandia National Laboratories

Sandia National Laboratories’ researchers Kelly Williams, left, and Corey Hudson look at the mosaic pattern of one of the Klebsiella pneumoniae plasmids and discuss mechanisms that mobilize resistance genes.

Consider Klebsiella pneumoniae, not typically a ferocious pathogen, but now armed with resistance to virtually all antibiotics in current clinical use. It is the most common species of carbapenem-resistant Enterobacteriaceae (CRE) in the United States. As carbapenems are considered the antibiotic of last resort, CREs are a triple threat for their resistance to nearly all antibiotics, high mortality rates and ability to spread their resistance to other bacteria.

But there is hope. A team of Sandia National Laboratories microbiologists for the first time recently sequenced the entire genome of a Klebsiella pneumoniae strain, encoding New Delhi Metallo-beta-lactamase (NDM-1). They presented their findings in a paper published in PLOS One, “Resistance Determinants and Mobile Genetic Elements of an NDM-1 Encoding Klebsiella pneumoniae Strain.”

The Sandia team of Corey Hudson, Zach Bent, Robert Meagher and Kelly Williams is beginning to understand the bacteria’s multifaceted mechanisms for resistance. To do this, they developed several new bioinformatics tools for identifying mechanisms of genetic movement, tools that also might be effective at detecting bioengineering.

“Once we had the entire genome sequenced, it was a real eye opener to see the concentration of so many antibiotic resistant genes and so many different mechanisms for accumulating them,” explained Williams, a bioinformaticist. “Just sequencing this genome unlocked a vault of information about how genes move between bacteria and how DNA moves within the chromosome.”

Meagher first worked last year with Klebsiella pneumoniae ATCC BAA-2146 (Kpn2146), the first U.S. isolate found to encode NDM-1. Along with E.coli, it was used to test an automatic sequencing library preparation platform for the RapTOR Grand Challenge, a Sandia project that developed techniques to allow discovery of pathogens in clinical samples.

“I’ve been interested in multi-drug-resistant organisms for some time. The NDM-1 drug resistance trait is spreading rapidly worldwide, so there is a great need for diagnostic tools,” said Meagher. “This particular strain of Klebsiella pneumoniae is fascinating and terrifying because it’s resistant to practically everything. Some of that you can explain on the basis on NDM-1, but it’s also resistant to other classes of antibiotics that NDM-1 has no bearing on.”

Unlocking Klebsiella pneumoniae

Assembling an entire genome is like putting together a puzzle. Klebsiella pneumoniae turned out to have one large chromosome and four plasmids, small DNA molecules physically separate from and able to replicate independently of the bacterial cell’s chromosomal DNA. Plasmids often carry antibiotic resistant genes and other defense mechanisms.

The researchers discovered their Klebsiella pneumoniae bacteria encoded 34 separate enzymes of antibiotic resistance, as well as efflux pumps that move compounds out of cells, and mutations in chromosomal genes that are expected to confer resistance. They also identified several mechanisms that allow cells to mobilize resistance genes, both within a single cell and between cells.

“Each one of those genes has a story: how it got into this bacteria, where it has been, and how it has evolved,” said Williams.

Necessity leads to development of new tools

Klebsiella pneumoniae uses established mechanisms to move genes, such as “jumping genes” known as transposons, and genomic islands, mobile DNA elements that enable horizontal gene transfer between organisms. However, the organism has so many tricks and weapons that the research team had to go beyond existing bioinformatics tools and develop new ways of identifying mechanisms of genetic movement.

Williams and Hudson detected circular forms of transposons in movement, which has never been shown this way, and discovered sites within the genome undergoing homologous recombination, another gene mobilization mechanism. By applying two existing bioinformatics methods for detecting genomic islands, they found a third class of islands that neither method alone could have detected.

“To some extent, every extra piece of DNA that a bacteria acquires comes at some cost, so the bacteria doesn’t usually hang onto traits it doesn’t need,” said Hudson. “The further we dug down into the genome, the more stories we found about movement within the organism and from other organisms and the history of insults, like antibiotics, that it has faced. This particular bacteria is just getting nastier over time.”

Applying findings to future work

The findings are being applied to a Laboratory Directed Research and Development project led by Sandia microbiologist Eric Carnes, who is examining alternative approaches for treating drug-resistant organisms. “Instead of traditional antibiotics, we use a sequence-based approach to silence expression of drug-resistant genes,” said Meagher.

The researchers also are applying their understanding of Klebsiella pneumoniae’s mechanisms of resistance and their new bioinformatics tools to developing diagnostic tools to detect bioengineering. Looking across 10 related but distinct strains of Klebsiella pneumoniae, they pinpointed regions that were new to their strain, and so indicate genetic movement.

“By studying the pattern of movement, we can better characterize a natural genomic island,” said Hudson. “This leads down the path of what does an unnatural island look like, which is an indication of bioengineering. We hope to apply the knowledge we gained from sequencing Klebsiella pneumoniae to developing diagnostic tools that could detect bioengineering.”

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

Sandia news media contact: Patti Koning, pkoning@sandia.gov, (925) 294-4911

Patti Koning | newswise

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>