Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia Researchers Find Clues to Superbug Evolution

24.09.2014

Imagine going to the hospital with one disease and coming home with something much worse, or not coming home at all.

With the emergence and spread of antibiotic-resistance pathogens, healthcare-associated infections have become a serious threat. On any given day about one in 25 hospital patients has at least one such infection and as many as one in nine die as a result, according to the Centers for Disease Control and Prevention.


Dino Vournas, Sandia National Laboratories

Sandia National Laboratories’ researchers Kelly Williams, left, and Corey Hudson look at the mosaic pattern of one of the Klebsiella pneumoniae plasmids and discuss mechanisms that mobilize resistance genes.

Consider Klebsiella pneumoniae, not typically a ferocious pathogen, but now armed with resistance to virtually all antibiotics in current clinical use. It is the most common species of carbapenem-resistant Enterobacteriaceae (CRE) in the United States. As carbapenems are considered the antibiotic of last resort, CREs are a triple threat for their resistance to nearly all antibiotics, high mortality rates and ability to spread their resistance to other bacteria.

But there is hope. A team of Sandia National Laboratories microbiologists for the first time recently sequenced the entire genome of a Klebsiella pneumoniae strain, encoding New Delhi Metallo-beta-lactamase (NDM-1). They presented their findings in a paper published in PLOS One, “Resistance Determinants and Mobile Genetic Elements of an NDM-1 Encoding Klebsiella pneumoniae Strain.”

The Sandia team of Corey Hudson, Zach Bent, Robert Meagher and Kelly Williams is beginning to understand the bacteria’s multifaceted mechanisms for resistance. To do this, they developed several new bioinformatics tools for identifying mechanisms of genetic movement, tools that also might be effective at detecting bioengineering.

“Once we had the entire genome sequenced, it was a real eye opener to see the concentration of so many antibiotic resistant genes and so many different mechanisms for accumulating them,” explained Williams, a bioinformaticist. “Just sequencing this genome unlocked a vault of information about how genes move between bacteria and how DNA moves within the chromosome.”

Meagher first worked last year with Klebsiella pneumoniae ATCC BAA-2146 (Kpn2146), the first U.S. isolate found to encode NDM-1. Along with E.coli, it was used to test an automatic sequencing library preparation platform for the RapTOR Grand Challenge, a Sandia project that developed techniques to allow discovery of pathogens in clinical samples.

“I’ve been interested in multi-drug-resistant organisms for some time. The NDM-1 drug resistance trait is spreading rapidly worldwide, so there is a great need for diagnostic tools,” said Meagher. “This particular strain of Klebsiella pneumoniae is fascinating and terrifying because it’s resistant to practically everything. Some of that you can explain on the basis on NDM-1, but it’s also resistant to other classes of antibiotics that NDM-1 has no bearing on.”

Unlocking Klebsiella pneumoniae

Assembling an entire genome is like putting together a puzzle. Klebsiella pneumoniae turned out to have one large chromosome and four plasmids, small DNA molecules physically separate from and able to replicate independently of the bacterial cell’s chromosomal DNA. Plasmids often carry antibiotic resistant genes and other defense mechanisms.

The researchers discovered their Klebsiella pneumoniae bacteria encoded 34 separate enzymes of antibiotic resistance, as well as efflux pumps that move compounds out of cells, and mutations in chromosomal genes that are expected to confer resistance. They also identified several mechanisms that allow cells to mobilize resistance genes, both within a single cell and between cells.

“Each one of those genes has a story: how it got into this bacteria, where it has been, and how it has evolved,” said Williams.

Necessity leads to development of new tools

Klebsiella pneumoniae uses established mechanisms to move genes, such as “jumping genes” known as transposons, and genomic islands, mobile DNA elements that enable horizontal gene transfer between organisms. However, the organism has so many tricks and weapons that the research team had to go beyond existing bioinformatics tools and develop new ways of identifying mechanisms of genetic movement.

Williams and Hudson detected circular forms of transposons in movement, which has never been shown this way, and discovered sites within the genome undergoing homologous recombination, another gene mobilization mechanism. By applying two existing bioinformatics methods for detecting genomic islands, they found a third class of islands that neither method alone could have detected.

“To some extent, every extra piece of DNA that a bacteria acquires comes at some cost, so the bacteria doesn’t usually hang onto traits it doesn’t need,” said Hudson. “The further we dug down into the genome, the more stories we found about movement within the organism and from other organisms and the history of insults, like antibiotics, that it has faced. This particular bacteria is just getting nastier over time.”

Applying findings to future work

The findings are being applied to a Laboratory Directed Research and Development project led by Sandia microbiologist Eric Carnes, who is examining alternative approaches for treating drug-resistant organisms. “Instead of traditional antibiotics, we use a sequence-based approach to silence expression of drug-resistant genes,” said Meagher.

The researchers also are applying their understanding of Klebsiella pneumoniae’s mechanisms of resistance and their new bioinformatics tools to developing diagnostic tools to detect bioengineering. Looking across 10 related but distinct strains of Klebsiella pneumoniae, they pinpointed regions that were new to their strain, and so indicate genetic movement.

“By studying the pattern of movement, we can better characterize a natural genomic island,” said Hudson. “This leads down the path of what does an unnatural island look like, which is an indication of bioengineering. We hope to apply the knowledge we gained from sequencing Klebsiella pneumoniae to developing diagnostic tools that could detect bioengineering.”

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

Sandia news media contact: Patti Koning, pkoning@sandia.gov, (925) 294-4911

Patti Koning | newswise

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>