Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sandia chemists find new material to remove radioactive gas from spent nuclear fuel

Research by a team of Sandia chemists could impact worldwide efforts to produce clean, safe nuclear energy and reduce radioactive waste.
Sandia chemist Tina Nenoff heads a team of researchers focused on removal of radioactive iodine from spent nuclear fuel. They identified a metal-organic framework that captures and holds the volatile gas, a discovery that could be used for nuclear fuel reprocessing and other applications.

The Sandia researchers have used metal-organic frameworks (MOFs) to capture and remove volatile radioactive gas from spent nuclear fuel. “This is one of the first attempts to use a MOF for iodine capture,” said chemist Tina Nenoff of Sandia’s Surface and Interface Sciences Department.

The discovery could be applied to nuclear fuel reprocessing or to clean up nuclear reactor accidents. A characteristic of nuclear energy is that used fuel can be reprocessed to recover fissile materials and provide fresh fuel for nuclear power plants. Countries such as France, Russia and India are reprocessing spent fuel.

The process also reduces the volume of high-level wastes, a key concern of the Sandia researchers. “The goal is to find a methodology for highly selective separations that result in less waste being interred,” Nenoff said.
Part of the challenge of reprocessing is to separate and isolate radioactive components that can’t be burned as fuel. The Sandia team focused on removing iodine, whose isotopes have a half-life of 16 million years, from spent fuel.

They studied known materials, including silver-loaded zeolite, a crystalline, porous mineral with regular pore openings, high surface area and high mechanical, thermal and chemical stability. Various zeolite frameworks can trap and remove iodine from a stream of spent nuclear fuel, but need added silver to work well.

“Silver attracts iodine to form silver iodide,” Nenoff said. “The zeolite holds the silver in its pores and then reacts with iodine to trap silver iodide.”

But silver is expensive and poses environmental problems, so the team set out to engineer materials without silver that would work like zeolites but have higher capacity for the gas molecules. They explored why and how zeolite absorbs iodine, and used the critical components discovered to find the best MOF, named ZIF-8.

“We investigated the structural properties on how they work and translated that into new and improved materials,” Nenoff said.

MOFs are crystalline, porous materials in which a metal center is bound to organic molecules by mild self-assembly chemical synthesis. The choice of metal and organic result in a very specific final framework.

The trick was to find a MOF highly selective for iodine. The Sandia researchers took the best elements of the zeolite Mordenite — its pores, high surface area, stability and chemical absorption — and identified a MOF that can separate one molecule, in this case iodine, from a stream of molecules. The MOF and pore-trapped iodine gas can then be incorporated into glass waste for long-term storage.

This illustration of a metal-organic framework, or MOF, shows the metal center bound to organic molecules. Each MOF has a specific framework determined by the choice of metal and organic. Sandia chemists identified a MOF whose pore size and high surface area can separate and trap radioactive iodine molecules from a stream of spent nuclear fuel. (Image courtesy of Sandia National Laboratories) Click on the thumbnail for a high-resolution image.

The Sandia team also fabricated MOFs, made of commercially available products, into durable pellets. The as-made MOF is a white powder with a tendency to blow around. The pellets provide a stable form to use without loss of surface area, Nenoff said.

Sandia has applied for a patent on the pellet technology, which could have commercial applications.

The Sandia researchers are part of the Off-Gas Sigma Team, which is led by Oak Ridge National Laboratory and studies waste-form capture of volatile gasses associated with nuclear fuel reprocessing. Other team members — Pacific Northwest, Argonne and Idaho national laboratories — are studying other volatile gases such as krypton, tritium and carbon.

The project began six years ago and the Sigma Team was formalized in 2009. It is funded by the U.S. Department of Energy Office of Nuclear Energy.

Sandia’s iodine and MOFs research was featured in two recent articles in the Journal of the American Chemical Society authored by Nenoff and team members Dorina Sava, Mark Rodriguez, Jeffery Greathouse, Paul Crozier, Terry Garino, David Rademacher, Ben Cipiti, Haiqing Liu, Greg Halder, Peter Chupas, and Karena Chapman. Chupas, Halder and Chapman are from Argonne.

“The most important thing we did was introduce a new class of materials to nuclear waste remediation,” said Sava, postdoctoral appointee on the project.

Nenoff said another recent paper in Industrial & Engineering Chemistry Research shows a one-step process that incorporates MOFs with iodine in a low-temperature, glass waste form. “We have a volatile off-gas capture using a MOF and we have a durable waste form,” Nenoff said.

Nenoff and her colleagues are continuing their research into new and optimized MOFs for enhanced volatile gas separation and capture.

“We’ve shown that MOFs have the capacity to capture and, more importantly, retain many times more iodine than current materials technologies,” said Argonne’s Chapman.
Sandia National Laboratories is a multiprogram laboratory operated and managed by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia news media contact: Nancy Salem,, (505) 844-2739

Nancy Salem | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>



Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

More VideoLinks >>>