Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Same pieces, different picture - Unprecedented detail on HIV structure reveals surprises

03.11.2014

Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany and collaborators from Heidelberg University, in the joint Molecular Medicine Partnership Unit, have obtained the first structure of the immature form of HIV at a high enough resolution to pinpoint exactly where each building block sits in the virus. The study, published online today in Nature, reveals that the building blocks of the immature form of HIV are arranged in a surprising way.

Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany and collaborators from Heidelberg University, in the joint Molecular Medicine Partnership Unit, have obtained the first structure of the immature form of HIV at a high enough resolution to pinpoint exactly where each building block sits in the virus. The study, published online today in Nature, reveals that the building blocks of the immature form of HIV are arranged in a surprising way.


Surprisingly, the building blocks in immature HIV (centre) are arranged differently from those of immature Mason-Pfizer Monkey Virus (top). To form the mature virus, HIV’s building blocks take on yet another arrangement (bottom).

Credit: EMBL/F.Schur

“The structure is definitely different from what we’d expected,” says John Briggs from EMBL, who led the work. “We assumed that retroviruses like HIV and Mason-Pfizer Monkey Virus would have similar structures, because they use such similar building blocks, but it turns out that their immature forms are surprisingly different from each other. At this point, we don’t really know why.”

Briggs and colleagues used cryo-electron microscopy to study the protein lattice that surrounds the virus’ genetic material. After infecting one of the cells in our immune system, HIV replicates, producing more copies of itself, each of which has to be assembled from a medley of viral and cellular components into an immature virus. This is the form that leaves the cell. The protein building blocks that make up the virus are then rearranged into the virus’ mature form, which can infect other cells.

The first cryo-electron microscopy images of immature HIV, obtained at EMBL in the 1990s, surprised researchers by showing that the virus did not have a regular symmetrical structure, as had been assumed. That meant it was going to be difficult to get a detailed picture of the structure of its protein lattice. Two decades on, by optimising both how data is collected at the microscope and how it is analysed, Florian Schur, a PhD student in Briggs’ lab, has now achieved an unprecedentedly detailed structure.

With this structure in hand, scientists have a basis to probe further. They can use it to decide where to focus efforts for achieving the even greater detail needed to explore potential drug targets, for instance. It will also enable researchers to understand how mutations might influence how the virus assembles. And the techniques themselves can be applied to a variety of questions.

“This approach offers so many possibilities,” says Schur. “You can look at other viruses, of course, but also at complexes and proteins inside cells, with a whole new level of detail.”

In future, the EMBL scientists will use the approach to look at other viruses and at the vesicles that transport material inside cells. They also aim to push the techniques even further, to allow them to see other parts of the viral proteins that are currently beyond their reach, but which they suspect play an important role in HIV maturation.

“In the long term, we’d also like to investigate how drugs which are known to inhibit virus assembly and maturation actually work,” Briggs concludes.

The study was conducted by the EMBL scientists together with their collaborators Barbara Müller and Hans-Georg Kräusslich at the University Clinic Heidelberg, in the joint Molecular Medicine Partnership Unit.

Published online in Nature on 22 October 2014.

Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany and collaborators from Heidelberg University, in the joint Molecular Medicine Partnership Unit, have obtained the first structure of the immature form of HIV at a high enough resolution to pinpoint exactly where each building block sits in the virus. The study, published online today in Nature, reveals that the building blocks of the immature form of HIV are arranged in a surprising way.

“The structure is definitely different from what we’d expected,” says John Briggs from EMBL, who led the work. “We assumed that retroviruses like HIV and Mason-Pfizer Monkey Virus would have similar structures, because they use such similar building blocks, but it turns out that their immature forms are surprisingly different from each other. At this point, we don’t really know why.”

Briggs and colleagues used cryo-electron microscopy to study the protein lattice that surrounds the virus’ genetic material. After infecting one of the cells in our immune system, HIV replicates, producing more copies of itself, each of which has to be assembled from a medley of viral and cellular components into an immature virus. This is the form that leaves the cell. The protein building blocks that make up the virus are then rearranged into the virus’ mature form, which can infect other cells.

The first cryo-electron microscopy images of immature HIV, obtained at EMBL in the 1990s, surprised researchers by showing that the virus did not have a regular symmetrical structure, as had been assumed. That meant it was going to be difficult to get a detailed picture of the structure of its protein lattice. Two decades on, by optimising both how data is collected at the microscope and how it is analysed, Florian Schur, a PhD student in Briggs’ lab, has now achieved an unprecedentedly detailed structure.

With this structure in hand, scientists have a basis to probe further. They can use it to decide where to focus efforts for achieving the even greater detail needed to explore potential drug targets, for instance. It will also enable researchers to understand how mutations might influence how the virus assembles. And the techniques themselves can be applied to a variety of questions.

“This approach offers so many possibilities,” says Schur. “You can look at other viruses, of course, but also at complexes and proteins inside cells, with a whole new level of detail.”

In future, the EMBL scientists will use the approach to look at other viruses and at the vesicles that transport material inside cells. They also aim to push the techniques even further, to allow them to see other parts of the viral proteins that are currently beyond their reach, but which they suspect play an important role in HIV maturation.

“In the long term, we’d also like to investigate how drugs which are known to inhibit virus assembly and maturation actually work,” Briggs concludes.

The study was conducted by the EMBL scientists together with their collaborators Barbara Müller and Hans-Georg Kräusslich at the University Clinic Heidelberg, in the joint Molecular Medicine Partnership Unit.


Published online in Nature on 22 October 2014. DOI: 10.1038/nature13838
For images, video and more information please visit: www.embl.org/press/2014/141102_Heidelberg


Policy regarding use

EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic


Sonia Furtado Neves
EMBL Press Officer & Deputy Head of Communications
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de
http://s.embl.org/press 


For images, video and more information please visit: www.embl.org/press/2014/141102_Heidelberg

------------------------------
Policy regarding use

EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.
------------------------------
Sonia Furtado Neves
EMBL Press Officer & Deputy Head of Communications
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de
http://s.embl.org/press

Sonia Furtado Neves | EMBL press

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>