Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Salamanders, regenerative wonders, heal like mammals, people

The salamander is a superhero of regeneration, able to replace lost limbs, damaged lungs, sliced spinal cord -- even bits of lopped-off brain.

But it turns out that remarkable ability isn't so mysterious after all -- suggesting that researchers could learn how to replicate it in people.

Scientists had long credited the diminutive amphibious creature's outsized capabilities to "pluripotent" cells that, like human embryonic stem cells, have the uncanny ability to morph into whatever appendage, organ or tissue happens to be needed or due for a replacement.

But in a paper set to appear Thursday in the journal Nature, a team of seven researchers, including a University of Florida zoologist, debunks that notion. Based on experiments on genetically modified axolotl salamanders, the researchers show that cells from the salamander's different tissues retain the "memory" of those tissues when they regenerate, contributing with few exceptions only to the same type of tissue from whence they came.

Standard mammal stem cells operate the same way, albeit with far less dramatic results -- they can heal wounds or knit bone together, but not regenerate a limb or rebuild a spinal cord. What's exciting about the new findings is they suggest that harnessing the salamander's regenerative wonders is at least within the realm of possibility for human medical science.

"I think it's more mammal-like than was ever expected," said Malcolm Maden, a professor of biology, member of the UF Genetics Institute, and author of the paper. "It gives you more hope for being able to someday regenerate individual tissues in people."

Also, the salamanders heal perfectly, without any scars whatsoever, another ability people would like to learn how to mimic, Maden said.

Axolotl salamanders, originally native to only one lake in central Mexico, are evolutionary oddities that become sexually reproducing adults while still in their larval stage. They are useful scientific models for studying regeneration because, unlike other salamanders, they can be bred in captivity and have large embryos that are easy to work on.

When an axolotl loses, for example, a leg, a small bump forms over the injury called a blastema. It takes only about three weeks for this blastema to transform into a new, fully functioning replacement leg -- not long considering the animals can live 12 or more years.

The cells within the blastema appear embryonic-like and originate from all tissues around the injury, including the cartilage, skin and muscle. As a result, scientists had long believed these cells were pluripotential -- meaning they came from a variety of sites and could make a variety of things once functioning in their regenerative mode.

Maden and his colleagues at two German institutions tested that assumption using a tool from the transgenic kit: the GFP protein. When produced by genetically modified cells, GFP proteins have the useful quality of glowing livid green under ultraviolet light. This allows researchers to follow the origin, movement and destination of the genetically modified cells.

The researchers experimented on both adult and embryonic salamanders.

With the embryos, the scientists grafted transgenic tissue onto sites already known to develop into certain body parts, then observed how and where the cells organized themselves as the embryo developed. This approach allowed them to see, literally, what tissues the transgenic tissue made. In perhaps the most vivid result, the researchers grafted GFP-modified nerve cells onto the part of the embryo known to develop into the nervous system. Once the creatures developed, ultraviolet light exams of the adults revealed the GFP cells stretched only along nerve pathways -- like glowing green strings throughout the body

With the adults, they took tissue from specific parts or organs from transgenic GFP-producing axolotls, grafted it onto normal axolotls, then cut away a chunk of the grafted tissue to allow regeneration. They could then determine the fate of the grafted green cells in the emerging blastema and replacement tissue.

The researchers' main conclusion: Only 'old' muscle cells make 'new' muscle cells, only old skin cells make new skin cells, only old nerve cells make new nerve cells, and so on. The only hint that the axolotl cells could revamp their function came with skin and cartilage cells, which in some circumstances seemed to swap roles, Maden said.

Maden said the findings will help researchers zero in on why salamander cells are capable of such remarkable regeneration. "If you can understand how they regenerate, then you ought to be able to understand why mammals don't regenerate," he said.

Maden said UF researchers will soon begin raising and experimenting on transgenic axolotls at UF as part of the The Regeneration Project, an effort to treat human brain and other diseases by examining regeneration in salamanders, newts, starfish and flatworms.

Malcolm Maden | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>