Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salamanders, regenerative wonders, heal like mammals, people

03.07.2009
The salamander is a superhero of regeneration, able to replace lost limbs, damaged lungs, sliced spinal cord -- even bits of lopped-off brain.

But it turns out that remarkable ability isn't so mysterious after all -- suggesting that researchers could learn how to replicate it in people.

Scientists had long credited the diminutive amphibious creature's outsized capabilities to "pluripotent" cells that, like human embryonic stem cells, have the uncanny ability to morph into whatever appendage, organ or tissue happens to be needed or due for a replacement.

But in a paper set to appear Thursday in the journal Nature, a team of seven researchers, including a University of Florida zoologist, debunks that notion. Based on experiments on genetically modified axolotl salamanders, the researchers show that cells from the salamander's different tissues retain the "memory" of those tissues when they regenerate, contributing with few exceptions only to the same type of tissue from whence they came.

Standard mammal stem cells operate the same way, albeit with far less dramatic results -- they can heal wounds or knit bone together, but not regenerate a limb or rebuild a spinal cord. What's exciting about the new findings is they suggest that harnessing the salamander's regenerative wonders is at least within the realm of possibility for human medical science.

"I think it's more mammal-like than was ever expected," said Malcolm Maden, a professor of biology, member of the UF Genetics Institute, and author of the paper. "It gives you more hope for being able to someday regenerate individual tissues in people."

Also, the salamanders heal perfectly, without any scars whatsoever, another ability people would like to learn how to mimic, Maden said.

Axolotl salamanders, originally native to only one lake in central Mexico, are evolutionary oddities that become sexually reproducing adults while still in their larval stage. They are useful scientific models for studying regeneration because, unlike other salamanders, they can be bred in captivity and have large embryos that are easy to work on.

When an axolotl loses, for example, a leg, a small bump forms over the injury called a blastema. It takes only about three weeks for this blastema to transform into a new, fully functioning replacement leg -- not long considering the animals can live 12 or more years.

The cells within the blastema appear embryonic-like and originate from all tissues around the injury, including the cartilage, skin and muscle. As a result, scientists had long believed these cells were pluripotential -- meaning they came from a variety of sites and could make a variety of things once functioning in their regenerative mode.

Maden and his colleagues at two German institutions tested that assumption using a tool from the transgenic kit: the GFP protein. When produced by genetically modified cells, GFP proteins have the useful quality of glowing livid green under ultraviolet light. This allows researchers to follow the origin, movement and destination of the genetically modified cells.

The researchers experimented on both adult and embryonic salamanders.

With the embryos, the scientists grafted transgenic tissue onto sites already known to develop into certain body parts, then observed how and where the cells organized themselves as the embryo developed. This approach allowed them to see, literally, what tissues the transgenic tissue made. In perhaps the most vivid result, the researchers grafted GFP-modified nerve cells onto the part of the embryo known to develop into the nervous system. Once the creatures developed, ultraviolet light exams of the adults revealed the GFP cells stretched only along nerve pathways -- like glowing green strings throughout the body

With the adults, they took tissue from specific parts or organs from transgenic GFP-producing axolotls, grafted it onto normal axolotls, then cut away a chunk of the grafted tissue to allow regeneration. They could then determine the fate of the grafted green cells in the emerging blastema and replacement tissue.

The researchers' main conclusion: Only 'old' muscle cells make 'new' muscle cells, only old skin cells make new skin cells, only old nerve cells make new nerve cells, and so on. The only hint that the axolotl cells could revamp their function came with skin and cartilage cells, which in some circumstances seemed to swap roles, Maden said.

Maden said the findings will help researchers zero in on why salamander cells are capable of such remarkable regeneration. "If you can understand how they regenerate, then you ought to be able to understand why mammals don't regenerate," he said.

Maden said UF researchers will soon begin raising and experimenting on transgenic axolotls at UF as part of the The Regeneration Project, an effort to treat human brain and other diseases by examining regeneration in salamanders, newts, starfish and flatworms.

Malcolm Maden | EurekAlert!
Further information:
http://www.ufl.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

28.06.2017 | Power and Electrical Engineering

Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity

28.06.2017 | Life Sciences

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>