Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rutgers Team Discovers Novel Approach to Stimulate Immune Cells

Research builds towards potential treatment for immune diseases and cancer

Researchers at Rutgers University have uncovered a new way to stimulate activity of immune cell opiate receptors, leading to efficient tumor cell clearance.

Dipak Sarkar, professor in the Department of Animal Sciences at the Rutgers School of Environmental and Biological Sciences and his research team have been able to take a new pharmacological approach to activate the immune cells to prevent cancer growth through stimulation of the opiate receptors found on immune cells.

This research, funded by the National Institutes of Health-National Institute on Alcohol Abuse and Alcoholosm, is featured on the cover of the May 11 issue of the Journal of Biological Chemistry. It describes two structurally different but functionally similar opioid receptors, Mu- and Delta-opioid receptors. These receptors form protein complexes as either two structurally similar receptors as a homodimer—formed by two identical molecules—or two structurally dissimilar protein complexes as a heterodimer—formed by ethanol inducement—in immune cells. The team pharmacologically fooled these two structurally different but functionally similar opioid receptors to form more homodimers so that opioid peptide increases the immune cells’ ability to kill tumor cells.

“The potential for this research can lead to production of endogenous opioids in the brain and the periphery becoming more effective in regulating stress and immune function,” says Sarkar.

Opioids, like endorphins, communicate with the immune system, so when there is a deficit of endorphin – due to fetal alcohol exposure, alcoholism and drug abuse, anxiety, depression and chronic psychological stress – the body undergoes stress shocks and, as Sarkar suggests, causes “immune incompetence.”

“Opioids act as the regulator of body stress mechanism, so when endorphins are low, body stress indicators are high,” says Sarkar, who directs the Endocrine Research Program at Rutgers and is a faculty member of the Rutgers Center of Alcohol Studies.

“What’s new about this latest research is that when we combine the Mu receptor blocker (antagonist) with the Delta receptor stimulator (agonist), the immune cells accrue increased foreign cell-killing ability,” explains Sarkar. “This makes the body highly effective in fighting against bacterial infection and tumor growth.”

Sarkar believes that combining this opioid antagonist and agonist may have potential therapeutic value in humans for the treatment of immune incompetence, cancer, pain and ethanol-dependent diseases.

Previous research by the Sarkar group showed that replenishing endorphins by cell therapy did prevent many of the stress and immune problems in fetal alcohol-exposed test subjects. However, cell therapy is highly complex, involving the cumbersome process of producing endorphin cells from neural stem cells of patients and can sometimes result in rejection and other issues.

The beginning of the team’s interest into how stress causes diseases started with the observation that mothers who suffer from alcohol abuse or with other developmental problems often give birth to children who exhibited hype-stress responses, linked to childhood disease, child abnormality, immune diseases and cancer.

As part of their investigation, the Sarkar research team learned that the endogenous opioid system in the brain is abnormal in kids and adults who demonstrate hyper-stress responses.

“With the link between hyper-stress responses and manifested immune issues, the goal has been to replenish the opioid deficit in the brain and lead to an effective therapy for immune and other diseases,” explained Sarkar.

The team also found that when people consume alcohol, the effectiveness of the body’s ability to defend against viral and bacterial invasion, and fight against cancer decreases.

“The overall goal of our research program is to increase our understanding of and develop new therapy for the treatment of cancer, immune and other alcoholism-induced diseases,” says Sarkar.

They hope that the promise of their novel pharmacological approach that modifies the activity of the opioid receptors of immune cells brings them one step closer in the long road to therapeutic advances.
Media Contact: Paula Walcott-Quintin

Paula Walcott-Quintin | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>