Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers Team Discovers Novel Approach to Stimulate Immune Cells

14.05.2012
Research builds towards potential treatment for immune diseases and cancer

Researchers at Rutgers University have uncovered a new way to stimulate activity of immune cell opiate receptors, leading to efficient tumor cell clearance.

Dipak Sarkar, professor in the Department of Animal Sciences at the Rutgers School of Environmental and Biological Sciences and his research team have been able to take a new pharmacological approach to activate the immune cells to prevent cancer growth through stimulation of the opiate receptors found on immune cells.

This research, funded by the National Institutes of Health-National Institute on Alcohol Abuse and Alcoholosm, is featured on the cover of the May 11 issue of the Journal of Biological Chemistry. It describes two structurally different but functionally similar opioid receptors, Mu- and Delta-opioid receptors. These receptors form protein complexes as either two structurally similar receptors as a homodimer—formed by two identical molecules—or two structurally dissimilar protein complexes as a heterodimer—formed by ethanol inducement—in immune cells. The team pharmacologically fooled these two structurally different but functionally similar opioid receptors to form more homodimers so that opioid peptide increases the immune cells’ ability to kill tumor cells.

“The potential for this research can lead to production of endogenous opioids in the brain and the periphery becoming more effective in regulating stress and immune function,” says Sarkar.

Opioids, like endorphins, communicate with the immune system, so when there is a deficit of endorphin – due to fetal alcohol exposure, alcoholism and drug abuse, anxiety, depression and chronic psychological stress – the body undergoes stress shocks and, as Sarkar suggests, causes “immune incompetence.”

“Opioids act as the regulator of body stress mechanism, so when endorphins are low, body stress indicators are high,” says Sarkar, who directs the Endocrine Research Program at Rutgers and is a faculty member of the Rutgers Center of Alcohol Studies.

“What’s new about this latest research is that when we combine the Mu receptor blocker (antagonist) with the Delta receptor stimulator (agonist), the immune cells accrue increased foreign cell-killing ability,” explains Sarkar. “This makes the body highly effective in fighting against bacterial infection and tumor growth.”

Sarkar believes that combining this opioid antagonist and agonist may have potential therapeutic value in humans for the treatment of immune incompetence, cancer, pain and ethanol-dependent diseases.

Previous research by the Sarkar group showed that replenishing endorphins by cell therapy did prevent many of the stress and immune problems in fetal alcohol-exposed test subjects. However, cell therapy is highly complex, involving the cumbersome process of producing endorphin cells from neural stem cells of patients and can sometimes result in rejection and other issues.

The beginning of the team’s interest into how stress causes diseases started with the observation that mothers who suffer from alcohol abuse or with other developmental problems often give birth to children who exhibited hype-stress responses, linked to childhood disease, child abnormality, immune diseases and cancer.

As part of their investigation, the Sarkar research team learned that the endogenous opioid system in the brain is abnormal in kids and adults who demonstrate hyper-stress responses.

“With the link between hyper-stress responses and manifested immune issues, the goal has been to replenish the opioid deficit in the brain and lead to an effective therapy for immune and other diseases,” explained Sarkar.

The team also found that when people consume alcohol, the effectiveness of the body’s ability to defend against viral and bacterial invasion, and fight against cancer decreases.

“The overall goal of our research program is to increase our understanding of and develop new therapy for the treatment of cancer, immune and other alcoholism-induced diseases,” says Sarkar.

They hope that the promise of their novel pharmacological approach that modifies the activity of the opioid receptors of immune cells brings them one step closer in the long road to therapeutic advances.
Media Contact: Paula Walcott-Quintin
848-932-4204
E-mail: quintin@aesop.rutgers.edu

Paula Walcott-Quintin | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>