Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers, Massachusetts General investigators find novel way to prevent drug-induced liver injury

16.01.2012
Blocking cell-to-cell communication may prevent liver damage and improve drug safety

Rutgers University and Massachusetts General Hospital (MGH) investigators have developed a novel strategy to protect the liver from drug-induced injury and improve associated drug safety.

In a report receiving advance online publication in the journal Nature Biotechnology, the team reports that inhibiting a type of cell-to-cell communication can protect against damage caused by liver-toxic drugs such as acetaminophen.

"Our findings suggest that this therapy could be a clinically viable strategy for treating patients with drug-induced liver injury," said Suraj Patel a postdoctoral researcher in the Center for Engineering in Medicine at MGH and the paper's lead author. "This work also has the potential to change the way drugs are developed and formulated, which could improve drug safety by providing medications with reduced risk of liver toxicity."

Drug-induced liver injury is the most common cause of acute liver failure in the U.S. and is also the most frequent reason for abandoning drugs early in development or withdrawing them from the market. Liver toxicity limits the development of many therapeutic compounds and presents major challenges to both clinical medicine and to the pharmaceutical industry.

Since no pharmaceutical strategies currently exist for preventing drug-induced liver injury, treatment options are limited to discontinuing the offending drug, supportive care and transplantation for end-stage liver failure.

The researchers investigated an approach that targets a liver's gap junctions – hollow multimolecular channels that connect neighboring cells and allow direct communication between coupled cells. In the heart, gap junctions propagate the electrical activity required for synchronized contraction, but their role in the liver has not been well understood

Recent work has shown that gap junctions spread immune signals from injured liver cells to surrounding undamaged cells, amplifying inflammation and injury. The current study examined inhibiting the action of liver-specific gap junctions to limit drug-induced liver injury.

The researchers first used a strain of genetically mutated mice that lack a particular liver-specific gap junction. The mice were administered various liver-toxic drugs such as acetaminophen, a commonly used medication best known under the Tylenol brand name. Acetaminophen overdoses are the most frequent cause of drug-induced liver injury.

Compared to normal mice, those lacking liver gap junctions were fully protected against liver damage, inflammation and death caused by administration of liver-toxic drugs. The team then identified a small-molecule inhibitor of liver gap junctions that, when given with or even after the toxic drugs, protected the livers of normal mice against injury and prevented their death.

"This finding is very exciting and potentially very powerful from a number of basic science and clinical application standpoints, which we are continuing to explore," said Martin Yarmush, senior author of the report and the Paul and Mary Monroe Professor of Biomedical Engineering at Rutgers. "However, before we can think about applying this approach to patients, we need to know more about any off-target effects of gap junction inhibitors and better understand the long-term ramifications of temporarily blocking liver-specific gap junction channels."

Additionally, cell culture experiments indicated that blocking gap junctions limited the spread through liver cells of damaging free radicals and oxidative stress, suggesting a possible mechanism for the observed protection.

Other co-authors of the study are Jack Milwid, Kevin King, Stefan Bohr, Arvin Iracheta-Vellve, Matthew Li, Antonia Vitalo and Biju Parekkadan of MGH, and Rohit Jindal of Rutgers. The work was supported by grants from the National Institutes of Health and Shriners Hospitals for Children.

Carl Blesch | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>