Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers, Massachusetts General investigators find novel way to prevent drug-induced liver injury

16.01.2012
Blocking cell-to-cell communication may prevent liver damage and improve drug safety

Rutgers University and Massachusetts General Hospital (MGH) investigators have developed a novel strategy to protect the liver from drug-induced injury and improve associated drug safety.

In a report receiving advance online publication in the journal Nature Biotechnology, the team reports that inhibiting a type of cell-to-cell communication can protect against damage caused by liver-toxic drugs such as acetaminophen.

"Our findings suggest that this therapy could be a clinically viable strategy for treating patients with drug-induced liver injury," said Suraj Patel a postdoctoral researcher in the Center for Engineering in Medicine at MGH and the paper's lead author. "This work also has the potential to change the way drugs are developed and formulated, which could improve drug safety by providing medications with reduced risk of liver toxicity."

Drug-induced liver injury is the most common cause of acute liver failure in the U.S. and is also the most frequent reason for abandoning drugs early in development or withdrawing them from the market. Liver toxicity limits the development of many therapeutic compounds and presents major challenges to both clinical medicine and to the pharmaceutical industry.

Since no pharmaceutical strategies currently exist for preventing drug-induced liver injury, treatment options are limited to discontinuing the offending drug, supportive care and transplantation for end-stage liver failure.

The researchers investigated an approach that targets a liver's gap junctions – hollow multimolecular channels that connect neighboring cells and allow direct communication between coupled cells. In the heart, gap junctions propagate the electrical activity required for synchronized contraction, but their role in the liver has not been well understood

Recent work has shown that gap junctions spread immune signals from injured liver cells to surrounding undamaged cells, amplifying inflammation and injury. The current study examined inhibiting the action of liver-specific gap junctions to limit drug-induced liver injury.

The researchers first used a strain of genetically mutated mice that lack a particular liver-specific gap junction. The mice were administered various liver-toxic drugs such as acetaminophen, a commonly used medication best known under the Tylenol brand name. Acetaminophen overdoses are the most frequent cause of drug-induced liver injury.

Compared to normal mice, those lacking liver gap junctions were fully protected against liver damage, inflammation and death caused by administration of liver-toxic drugs. The team then identified a small-molecule inhibitor of liver gap junctions that, when given with or even after the toxic drugs, protected the livers of normal mice against injury and prevented their death.

"This finding is very exciting and potentially very powerful from a number of basic science and clinical application standpoints, which we are continuing to explore," said Martin Yarmush, senior author of the report and the Paul and Mary Monroe Professor of Biomedical Engineering at Rutgers. "However, before we can think about applying this approach to patients, we need to know more about any off-target effects of gap junction inhibitors and better understand the long-term ramifications of temporarily blocking liver-specific gap junction channels."

Additionally, cell culture experiments indicated that blocking gap junctions limited the spread through liver cells of damaging free radicals and oxidative stress, suggesting a possible mechanism for the observed protection.

Other co-authors of the study are Jack Milwid, Kevin King, Stefan Bohr, Arvin Iracheta-Vellve, Matthew Li, Antonia Vitalo and Biju Parekkadan of MGH, and Rohit Jindal of Rutgers. The work was supported by grants from the National Institutes of Health and Shriners Hospitals for Children.

Carl Blesch | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>