Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RUB scientists breed biomimetic surfaces from molecular coating

12.11.2008
Material of benefit to both contact lenses and the hulls of ships
RUB scientists breed biomimetic surfaces from molecular coating
Investigation and influence of biocompatibility

Proteins play a decisive role in both the tolerability of contact lenses and the adherence of mussels to the hulls of ships. They develop a biofilm during their initial contact with the foreign material. This highly complex process is extremely difficult to study.

Scientists in Bochum, working in collaboration with colleagues in Frankfurt and Marburg, have developed a new method of investigation that simplifies the decoding of the mechanisms involved. The scientists breed “made-to-measure” molecular “furs” on surfaces, with the individual “hairs” consisting of peptides, short proteins. These peptides control the biocompatibility, i.e. which proteins adsorb. By using a specific peptide, the scientists were even able to create a surface which is totally resistant to proteins, a feature which is highly desirable for particular purposes (e.g. for contact lenses). The scientists have documented their new method in the Journal of the American Chemical Society.

Residual proteins are responsible for the rejection reaction of implants

During the first contact of a body fluid with foreign objects (e.g. implants), proteins are immediately adsorbed by the surface of this material. During this process, they are however damaged, lose their function and develop a biofilm. The exact nature of this biofilm, which is dependent upon the surface of the material and pretreatment, then determines whether the body rejects the implant or whether it grows inward as desired. Precise comprehension of these processes is aggravated because the adsorbed protein layers are extremely complex and thus elude meticulous research.

Peptide coating grows on a layer of gold

Researchers in Physical Chemistry (Prof. Christof Wöll) and Inorganic Chemistry (Prof. Nils Metzler-Nolte) of the Ruhr-University have developed a new class of molecules with which biofilms with predefined properties can be fabricated in a straightforward fashion. The first step consists of the application of a molecular “anchor” to short protein chains (peptides) comprised of few amino acids. If these molecular hybrids come into contact with gold, they are anchored by rigid chemical bonds to the metal, subsequently developing a coating as thick and long as the molecule. The surface of the gold layer is extremely even, thus it serves as “platter” on which diverse analytical methods can be used for precise investigation of peptide coatings. This layer is especially usefully for analysis of the adsorption of proteins. SPR (surface plasmon resonance) is a common method and enables rapid determination of the type of proteins adsorbed by peptide coatings, as well as the speed of adsorption. The data gained enables prognoses of possible rejection by the human immune system.

No protein adsorbs

In order to demonstrate the extreme flexibility of this method the scientists in Bochum made use of a peptide sequence optimized for protein rejection. The result of the analysis of the biocoating created by anchoring these peptides on the Au-surface was surprising. The protein rejection rate of the first sequence tested was almost as high as the best substance used for this purpose to date. Prof. Wöll was somewhat amazed and stated that the research team had selected the peptide amino sequence merely based on the fact that hydrophilic peptides are more likely to reject proteins, as is also the case with twisted peptides. The resultant surface completely resisted the adsorption of proteins. This property is, for example, desirable for the hulls of ships to prevent the adherence of mussels, which in turn increase the resistance and thus fuel consumption. This feature is also desirable for contact lenses, because it is conceivable that daily cleaning would then possibly no longer be necessary. The major criterion during the development of implant material is the creation of surfaces that only adsorb specific proteins thus ensuring firm growth into the body. Prof. Wöll is certain that the new method developed by his research team will help to create “tailor made” materials for this purpose.

SAMs assemble themselves

One of the fundamental properties for the synthesis of these biocompatible coatings is the development of self-assembled monolayers (SAMs) from organothiols. At the chair of Physical Chemistry I, these ultrathin, but structurally well-defined, molecular layers have already been investigated in detail and subject to constant improvement for a number of fields of application for over a decade. This highly interdisciplinary field of research necessitates excellent collaboration between the members of the faculties of physical chemistry and synthetic chemistry, the latter being capable of synthesizing the required organothiols. The peptides used in this study were connected to the thiol linkers employing an only recently developed synthesis strategy - so-called “click” chemistry - which has been improved by Prof. Metzler-Nolte. Totally diverse molecules, in this case peptides and the thiol anchor, can simply be “clicked” together using this method.

Title

Chelmowski, Rolf; Koester, David; Prekelt, Andreas; Terfort, Andreas; Winkler, Tobis; Kerstan, Andreas; Grunwald, Christian, Metzler-Nolte, Nils; Wöll, Christof;: Peptide-based SAMs that resist the adsorption of proteins. In: Journal of the American Chemical Society. S. 14952 Nr. 130, 2008

Prof. Dr. Christof Wöll | alfa
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>