Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RUB-Chemists "Picturise" Protein Folding

05.08.2008
New KITA-Spectroscopy Allows Real-Time Observation
Angewandte Chemie: The Way, How Water and Proteins Interact

For the first time, chemists of Prof. Martina Havenith's and Prof. Martin Gruebele's group have "picturised" the spectacle of protein folding in water by THz spectroscopy.

Recently, new developed KITA-spectroscopy (Kinetic Terahertz Absorption Spectroscopy) was applied to protein folding with a resolution of one picture per millisecond and combined with other biophysical methods, such as X-ray diffraction (SAXS), fluorescence and CD spectroscopy. Thereby, the researchers from the Ruhr-University Bochum and the University of Illinois observed that folding proceeds in two phases. In a very rapid first phase, the protein collapses in less than a millisecond, while at the same time, a rearrangement of the protein-water network takes place. In a slower second phase, after nearly a second, the protein folds to its native state.

Hitherto, THz-spectroscopy was restricted to steady-state observations of either the start or the end point of folding. "Only now can we see the whole stage play, no longer just the opening scene and the curtain call", Prof. Havenith-Newen clarifies. This work has been published in the current edition of the journal "Angewandte Chemie".

... more about:
»KITA-spectroscopy »folding

How Proteins Arrange the Water

From their previous work, the RUB-researchers already knew about the strong influence of proteins on the water in its vicinity. In the bulk, every 1.3 picoseconds hydrogen bonds are formed and broken between single water molecules - thus resulting in a fairly disorder liquid. However, even small protein concentrations bring the water molecules more in line with each other. The dynamic motions of the water network are altered by the protein. Folded proteins were also known to show a significantly different influence on water molecules than unfolded proteins. Now KITA-spectroscopy for the first time allowed insight into the time-period in-between these two states.

Dynamics of Water and Protein are Strongly Correlated

In KITA-spectroscopy, the emission of short Terahertz-pulses is used to provide unique pictures of the processes observed with millisecond-resolution. The RUB-chemists initiated the folding process and then monitored the course of events. It turned out that within less than ten milliseconds, the motions of the water network were altered as well as the protein itself being restructured. "These two processes practically take place simultaneously", Prof. Havenith-Newen states, "they are strongly correlated." These observations support the yet controversial suggestion that water plays a fundamental role in protein folding, and thus in protein function, and does not stay passive. After the initial restructuring, a second significantly slower phase (spanning a period of 0.9 seconds) takes place inside the protein. In this process, the protein folds to its final native structure.

HFSP Funding

This work was funded by a grant from the Human Frontier Science Program (HFSP). Martin Gruebele, as a Friedrich-Wilhelm Bessel laureate of the Alexander von Humboldt-Foundation, did research at the RUB Faculty of Chemistry and Biochemistry.

Online published as hot topic article:

Seung Joong Kim, Benjamin Born, Martina Havenith, and Martin Gruebele: Real-time detection of protein-water dynamics upon protein folding by Terahertz absorption. In: Angewandte Chemie, http://www3.interscience.wiley.com/journal/121356250/abstract

Supporting Information

Prof. Dr. Martina Havenith-Newen,
Faculty of Chemistry and Biochemistry, Ruhr-University Bochum,
Phone: 0049-234/32-24249, Fax: 0049-234/32-14183,
E-Mail: martina.havenith@ruhr-uni-bochum.de

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de
http://www3.interscience.wiley.com/journal/121356250/abstract

Further reports about: KITA-spectroscopy folding

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>