Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Rotting Mushroom to Drug?

29.11.2012
Bacterial virulence factor of mushroom soft rot identified

Soft rot diseases cause a great deal of damage in agriculture, and turn fruits, vegetables, and mushrooms to mush. By using imaging mass spectrometry together with genetic and bioinformatic techniques (genome mining), German researchers have now discovered the substance the bacteria use to decompose mushrooms. As the scientists report in the journal Angewandte Chemie, the substance called jagaricin could represent a starting point for the development of new antifungal drugs.



Button mushrooms with soft rot develop typical lesions and are eventually completely disintegrate. The pathogen causing soft rot in cultivated mushrooms has been identified as Janthinobacterium agarididamnosum. A team led by Christian Hertweck at the Leibniz Institute for Natural Product Research and Infection Biology in Jena (Germany) wanted to know which bacterial compound is responsible for this destruction in order to better understand the pathobiology and to find possible protective measures. If the soft rot bacteria produce a substance that attacks mushrooms, it is also conceivable that this substance could be effective against microbial fungi, which cause dangerous infections in humans.

Their challenge was to search for an unknown substance that the bacteria do not produce under standard culture conditions, but only when they attack a mushroom. Hertweck and his co-workers used a method called genome mining. They sequenced the genome of the bacterium and searched it for relevant biosynthesis genes. Using bioinformatic techniques, they made predictions about the structures of the metabolites.

In order to stimulate the production of virulence factors, the researchers infected slices of button mushroom with the bacterium and examined the resulting decomposed areas with imaging mass spectrometry. This produced a mass spectrum for every point measured on the analyzed surface, allowing the researchers to identify a mass peak that only occurred in spectra from infected areas.

The team found a DNA jag sequence that codes for the biosynthetic apparatus that produces the substance in question. Addition of mushroom fragments and a special growth medium then allowed them to obtain and isolate larger amounts of the compound from a liquid cell culture.

The structure of jagaricin – which is what they called the substance – was fully determined using physical chemical analyses, chemical derivatization, and bioinformatics. The compound is a novel lipopeptide with an unusual structure. Pure jagaricin induces the symptoms of soft rot in mushrooms.

The researchers were thus able to demonstrate that jagaricin is involved in the infectious process of the soft rot disease. Degrading enzymes presumably also participate.

The scientists also determined that jagaricin is effective against Candida albicans, Aspergillus fumigatus, and Aspergillus terreus, which cause human fungal infections. Perhaps this substance could be a starting point for the development of a new antifungal drug.

About the Author
Prof. Dr. Christian Hertweck directs the Division of Biomolecular Chemistry at the Leibniz Institute for Natural Product Research and infection Biology (HKI) and holds the Chair of Natural Products Chemistry at Friederich Schiller University Jena. His research interests are in the field of microbial biosynthesis, in which chemical and biological methods are used synergistically.
Author: Christian Hertweck, Leibniz Institute for Natural Product Research and Infection, Jena (Germany), http://www.hki-jena.de/index.php/e42e39841b1b4e1c8e3c12899a395418/2/107
Title: Imaging Mass Spectrometry and Genome Mining Reveal Highly Antifungal Virulence Factor of Mushroom Soft Rot Pathogen

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201206658

Prof. Dr. Christian Hertweck | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://dx.doi.org/10.1002/anie.201206658

More articles from Life Sciences:

nachricht Tracking the American Woodcock
28.07.2015 | University of Arkansas, Fayetteville

nachricht Possible Path Toward First Anti-MERS Drugs
28.07.2015 | American Crystallographic Association (ACA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Possible Path Toward First Anti-MERS Drugs

28.07.2015 | Life Sciences

Smart Hydrogel Coating Creates “Stick-slip” Control of Capillary Action

28.07.2015 | Materials Sciences

Are Fish Getting High on Cocaine?

28.07.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>