Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ronin recruits protein 'allies' to sustain embryonic stem cell growth

25.06.2010
Ronin, crucial to the self-renewal of embryonic stem cells, and a co-regulator called Hcf-1, binds to a small strand of DNA called a hyperconserved enhancer element to control a gene "program" that stimulates growth of the stem cells and may even play a role in cancer, said a group of researchers led by Baylor College of Medicine in a current report in the journal Genes and Development.

Dr. Thomas P. Zwaka, associate professor in the Stem Cells and Regenerative Medicine (STaR) Center at BCM and others in his laboratory first identified Ronin and its role in maintaining stem cells in their undifferentiated state. Now he and his colleagues from the University of Houston, The University of Texas MD Anderson Cancer Center and Massachusetts Institute of Technology (MIT) in Cambridge, Mass., have identified the tiny strand of DNA that enables the protein with its co-regulator Hcf-1 to maintain the rapid growth that characterizes embryonic stems cells.

Finding this small DNA strand required determining the genetic sequence of the site to which Ronin binds in the genome, he said. They used high tech, extremely rapid sequencing methods (high throughput, massively parallel sequencing) to identify the appropriate sequences and determine their genetic code. They analyzed 866 potential binding sites and found a similar motif in 844.

As chance would have it, this genetic sequence had been previously identified in a pure bioinformatics study of genetic sequences that are present in most mammalian species. Because such sequences are conserved throughout evolution, they are believed to play a fundamental role in cellular processes. In a list of 100 most conserved genetic regions, this DNA sequence ranked fourth in frequency. In this case, researchers believe that the small DNA strand bound to a transcription factor that they had not identified. (A transcription factor governs translation of the DNA message in a gene into RNA, which can then be used by the cell's machinery as a template for a protein.)

"Ronin is that factor," said Zwaka. "Ronin binds to the 'hyperconserved enhancer element' sequence and then recruits Hcf-1. Only if it recruits Hcf-1 do we get activation of the special gene growth program."

With this highly conserved enhancer element, the Ronin/Hcf-1 combination controls a specific growth program of genes that are required in the early formation of an embryo, stem cells and maybe in some tumor cells, he said.

"When you look at the target genes of Ronin/Hcf-1, all are in the category of protein metabolism," he said.

Embryonic stem cells are characterized by rapid growth and renewal.

"Graduate students complain that they have to split and feed the cells every day. If you don't supply them with fresh medium, they die because they use it all up. It is important to understand what underlies this prolific growth," he said.

Understanding that could help scientists growth the cells better in the laboratory. Cancer growth, in many ways, simulates that of embryonic stem cells, he said. Understanding the growth program made up of 1,000 or more genes regulated by Ronin/Hcf-1 could help determine new strategies for fighting tumors.

Others who took part in this research include Dr. Marion Dejosez of BCM, Dr. Stuart S. Levine, Garrett M. Frampton, Warren Whyte and Dr. Richard A. Young of MIT, Sabrina A. Stratton and Dr. Michelle C. Barton of MD Anderson and Dr. Preethi H. Gunaratne of UH.

Funding for this work came from the National Institutes of Health, the Diana Helis Henry Medical Research Foundation and the Huffington Foundation.

When the embargo lifts, this report will be available at http://genesdev.cshlp.org/.

For more information on basic science research at Baylor College of Medicine, go to www.bcm.edu/fromthelab or www.bcm.edu/news.

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu/news

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>