Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA sequencing of 750-year-old barley virus sheds new light on the Crusades

07.02.2014
Srobincientists have for the first time sequenced an ancient RNA genome – of a barley virus once believed to be only 150 years old - pushing its origin back at least 2,000 years and revealing how intense farming at the time of the Crusades contributed to its spread.

Researchers at the University of Warwick have detected and sequenced the RNA genome of Barley Stripe Mosaic Virus (BSMV) in a 750-year-old barley grain found at a site near the River Nile in modern-day Egypt. Their study is published in the journal Scientific Reports.



This new find challenges current beliefs about the age of the BSMV virus, which was first discovered in 1950 with the earliest record of symptoms just 100 years ago.

Although ancient DNA genomes have been sequenced before, ancient RNA genomes have not been as RNA breaks down more rapidly than DNA – generally around 50 times as fast.

However in extremely dry conditions, such as those at the site in Qasr Ibrim in Lower Nubia where the barley was found, RNA can be better preserved and this has allowed the scientists to successfully sequence its genome.

Using the new medieval RNA to calibrate estimates of the rate of mutations, the researchers were able to trace the evolution of the Barley Stripe Mosaic Virus to a probable origin of around 2,000 years ago, but potentially much further back to the domestication of barley in the Near East around 11,000 years ago.

BSMV is transmitted through seed-to-seed contact so it is likely to originally have been transferred from the wild grass population to an early cultivated form of barley while the seeds were stored.

Dr Robin Allaby of the School of Life Sciences at the University of Warwick, who led the study, said: “It is important to know as much as we can about virus evolution as emerging infectious plant diseases are a growing threat to global food security, and of those viruses account for almost half.

“History tells us about the devastation caused by the emergence of disease from wild hosts in disparate countries, such as the Central American origin of the oomycete that led to the Irish potato famine.

“We need to build up an accurate picture of the evolution of different types of virus so we can make better decisions about policies on plant movement.

“The medieval RNA from Qasr Ibrim gives us a vital clue to unlock the real age of the Barley Stripe Mosaic Virus.

“It is very difficult to understand how a plant disease evolved by solely relying on recent samples, however this 750-year-old example of the virus allows us to more accurately estimate its evolution rates and date of origin.

“Without the Medieval RNA evidence, the virus appears to be much younger than it actually is, when in fact its origins go back thousands of years.

“It’s possible that other viruses that similarly appear to be very recent may in fact have a more ancient origin.”

The researchers believe that the Medieval BSMV genome came from a time of rapid expansion of the plant disease in the Near East and Europe.

This coincided with the tumult of the Crusades which saw the Christian lands of Europe take arms against the Muslim territories of the Near East with their sights set on the city of Jerusalem. The seventh Crusade of Louis IX in 1234 is the most closely aligned in date to the origin of the virus expansion.

The researchers believe the massive war effort could have caused the virus to spread, fuelled by an intensification of farming in order to feed the armies engaged in the campaign.

This made contact with cultivated barley and wild grass more likely, providing opportunities for the virus to ‘jump’ into the crop.

Genetic evidence also points to a split into an east and west BSMV lineage around the end of the 15th century, around 100 years after the Mongol Empire stabilised the Silk Road. It is likely that BSMV was transported to the east via trade routes such as the Silk Road in the late Medieval period.

In more recent history, the virus appears to have spread to the US from Europe around 120-150 years ago.

The research was supported by the research funding body BBSRC.

Further information
Dr Allaby can be contacted on
R.G.Allaby@warwick.ac.uk
or +44 (0) 2476 575059

Luke Harrison | EurekAlert!
Further information:
http://www.warwick.ac.uk

Further reports about: BSMV Barley Stripe Mosaic Virus CRUSADE RNA RNA genome Virus barley virus plant disease

More articles from Life Sciences:

nachricht More than just a mechanical barrier – epithelial cells actively combat the flu virus
04.05.2016 | Helmholtz-Zentrum für Infektionsforschung

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>