Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA research strategy for Europe takes shape

05.03.2009
Research into RNA, a molecule found in every cell of our bodies, could lead to remarkable advances in the treatment of diseases such as cancer and diabetes, a meeting organised by the European Science Foundation was told.

The conference, held the institute of Parasitología y Biomedicina "López-Neyra", CSIC in Granada, Spain, on 23 February 2009, was part of an ESF initiative to develop a coherent strategy for RNA research in Europe in recognition of the potential of RNA to result in new approaches to treating human diseases.

For many years it was believed that RNA’s sole function in cells was to transmit genetic information from DNA during the manufacture of proteins – the cell’s workhorse molecules. However, in recent years it has become clear that RNA has many more sophisticated functions and that there are more types of RNA than previously known.

The field exploded into activity with the discovery in 1998 by US researchers Andrew Fire and Craig Mello of a phenomenon called RNA interference, meaning that genes can be ‘silenced’ by RNA. This discovery, for which Fire and Mello were awarded the Nobel Prize in 2006, revolutionised the way scientists think about how genetic information is controlled in cells, and has opened the possibility of using gene silencing as a therapy where rogue genes cause disease.

“Research into RNA has great promise for both basic science and biotechnology and medicine,” said the meeting’s chairman, Professor Lars Thelander of Umeå University in Sweden. “Most pharmaceutical companies now have RNA projects, but the field is still in its early days and it could be another ten years before we see products appearing in the clinics.”

Professor Thomas Cech of the Howard Hughes Medical Institute in the US told the meeting how he discovered that RNA could also act as a biological catalyst – something that it was previously thought was the preserve of proteins representing a wonderful example of the versatility of RNA function. The discovery gave rise to new ideas about how life on Earth might have started and resulted in Professor Cech being awarded a Nobel Prize in 1989.

The Granada “Consensus Conference” was organised by ESF as part of a ‘Forward Look’ entitled ‘RNA World: a new frontier in biomedical research’ aimed at developing a strategy for research in RNA over the next ten years. Three earlier workshops had examined various aspects of RNA research to identify where gaps in our knowledge lie and what is required to plug these gaps and fulfil the promise that RNA holds. Forward Looks are a key part of ESF’s work, examining important areas of science and technology in consultation with leading scientists and policy makers to develop a strategic framework for research.

A Forward Look report on RNA research is due to be published later this year, detailing the scientific questions that need to be answered and giving politicians and policy makers the information they need when deciding where to direct research funding to ensure that Europe remains globally competitive in this key area of emerging science.

Sofia Valleley | EurekAlert!
Further information:
http://www.esf.org/rnaworld

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>