Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA double helix structure identified using synchrotron light

27.08.2013
Scientists prove 50-year-old hypothesis of RNA “higher-order” structure

When Francis Crick and James Watson discovered the double helical structure of deoxyribonucleic acid (DNA) in 1953, it began a genetic revolution to map, study, and sequence the building blocks of living organisms.


A rendering of the poly (rA)11 RNA double helical structure

DNA encodes the genetic material passed on from generation to generation. For the information encoded in the DNA to be made into the proteins and enzymes necessary for life, ribonucleic acid (RNA), single-stranded genetic material found in the ribosomes of cells, serve as intermediary. Although usually single-stranded, some RNA sequences were predicted to have the ability to form a double helix, much like DNA.

In 1961, Alexander Rich along with David Davies, Watson, and Crick, hypothesized that the RNA known as poly (rA) could form a parallel-stranded double helix based on the results of fibre diffraction experiments.

Fifty years later, scientists from McGill University successfully crystallized a short RNA sequence, poly (rA)11, and used data collected at the Canadian Light Source (CLS) and the Cornell High Energy Synchrotron to confirm the hypothesis of a poly (rA) double-helix.

The detailed 3D structure of poly (rA)11 was published by the laboratory of Dr. Kalle Gehring, McGill University, in collaboration with George Sheldrick, University of Göttingen, and Christopher WIlds, Concordia University. The paper appeared in the journal Angewandte Chemie International Edition under the title of “Structure of the Parallel Duplex of Poly (A) RNA: Evaluation of a 50 year-Old Prediction.”

“After 50 years of study, the identification of a novel nucleic acid structure is very rare. So when we came across the unusual crystals of poly (rA), we jumped on it,” said Dr. Gehring.

Gehring said identifying the double-helical RNA will have interesting applications for research in biological nanomaterials and supramolecular chemistry. Nucleic acids have astounding properties of self-recognition and their use as a building material opens new possibilities for the fabrication of bionanomachines – nanoscale devices created using synthetic biology.

“Bionanomachines are advantageous because of their extremely small size, low production cost, and the ease of modification,” said Gehring. “Many bionanomachines already affect our everyday lives as enzymes, sensors, biomaterials, and medical therapeutics.”

Dr. Gehring added that proof of the RNA double helix may have diverse downstream benefits for the medical treatments and cures for diseases like HIV and AIDS, or even to help regenerate biological tissues.

“Our discovery of the poly (rA) structure highlights the importance of basic research. We were looking for information about how cells turn mRNA into protein but we ended up answering a long-standing question from supramolecular chemistry.

For the experiments, Gehring and a team of researchers used data obtained at the CLS Canadian Macromolecular Crystallography Facility (CMCF) to successfully solve the structure of poly (rA)11 RNA.

CMCF Beamline Scientist Michel Fodje said the experiments were very successful in identifying the structure of the RNA and may have consequences for how genetic information is stored in cells.

“Although DNA and RNA both carry genetic information, there are quite a few differences between them,” said Dr. Fodje. “mRNA molecules have poly (rA) tails, which are chemically identical to the molecules in the crystal. The poly (rA) structure may be physiologically important, especially under conditions where there is a high local concentration of mRNA. This can happen where cells are stressed and mRNA becomes concentrated in granules within cells.”

With this information, researchers will continue to map the diverse structures of RNA and their roles in the design of novel bionanomachines and in cells during times of stress.

Reference: Safaee, N., Noronha, A. M., Rodionov, D., Kozlov, G., Wilds, C. J., Sheldrick, G. M., & Gehring, K. (2013). Structure of the Parallel Duplex of Poly (A) RNA: Evaluation of a 50 Year‐Old Prediction. Angewandte Chemie International Edition.

About the Canadian Light Source:

The Canadian Light Source is Canada’s national centre for synchrotron research and a global centre of excellence in synchrotron science and its applications. Located on the University of Saskatchewan campus in Saskatoon, the CLS has hosted 1,700 researchers from academic institutions, government, and industry from 10 provinces and territories; delivered over 26,000 experimental shifts; received over 6,600 user visits; and provided a scientific service critical in over 1,000 scientific publications, since beginning operations in 2005.

CLS operations are funded by Canada Foundation for Innovation, Natural Sciences and Engineering Research Council, Western Economic Diversification Canada, National Research Council of Canada, Canadian Institutes of Health Research, the Government of Saskatchewan and the University of Saskatchewan.

Synchrotrons work by accelerating electrons in a tube at nearly the speed of light using powerful magnets and radio frequency waves. By manipulating the electrons, scientists can select different forms of very bright light using a spectrum of X-ray, infrared, and ultraviolet light to conduct experiments.

Synchrotrons are used to probe the structure of matter and analyze a host of physical, chemical, geological and biological processes. Information obtained by scientists can be used to help design new drugs, examine the structure of surfaces in order to develop more effective motor oils, build more powerful computer chips, develop new materials for safer medical implants, and help clean-up mining wastes, to name a few applications.

Dr. Kalle Gehring | EurekAlert!
Further information:
http://www.lightsource.ca/

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>