Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New RNA-based therapeutic strategies for controlling gene expression

03.02.2012
Small RNA-based nucleic acid drugs represent a promising new class of therapeutic agents for silencing abnormal or overactive disease-causing genes, and researchers have discovered new mechanisms by which RNA drugs can control gene activity. A comprehensive review article in Nucleic Acid Therapeutics, a peer-reviewed journal published by Mary Ann Liebert, Inc., details these advances.

Short strands of nucleic acids, called small RNAs, can be used for targeted gene silencing, making them attractive drug candidates. These small RNAs block gene expression through multiple RNA interference (RNAi) pathways, including two newly discovered pathways in which small RNAs bind to Argonaute proteins or other forms of RNA present in the cell nucleus, such as long non-coding RNAs and pre-mRNA.

Keith T. Gagnon, PhD, and David R. Corey, PhD, University of Texas Southwestern Medical Center, in Dallas, review common features shared by RNAi pathways for controlling gene expression and focus in detail on the potential for Argonaute-RNA complexes in gene regulation and other exciting new options for targeting emerging forms of non-coding RNAs and pre-mRNAs in the article "Argonaute and the Nuclear RNAs: New Pathways for RNA Mediated Control of Gene Expression."

"The field of RNA mediated control of gene expression is rapidly evolving and the article by Gagnon and Corey provides a highly informative and up to date review of this exciting and often surprising area of biomedical research. We are delighted to publish this important review for the field," says Co-Editor-in-Chief Bruce A. Sullenger, PhD, Duke Translational Research Institute, Duke University Medical Center, Durham, NC.

Nucleic Acid Therapeutics is under the editorial leadership of Co-Editors-in-Chief Bruce A. Sullenger, PhD, and C.A. Stein, MD, PhD, Department of Oncology, Albert Einstein-Montefiore Cancer Center, Montefiore Medical Center; and Executive Editor Fintan Steele, PhD (SomaLogic, Boulder, CO).

Nucleic Acid Therapeutics is an authoritative, peer-reviewed journal published bimonthly in print and online that focuses on cutting-edge basic research, therapeutic applications, and drug development using nucleic acids or related compounds to alter gene expression. Nucleic Acid Therapeutics is the official journal of the Oligonucleotide Therapeutics Society. A complete table of contents and free sample issue may be viewed online at www.liebertpub.com/nat.

Mary Ann Liebert, Inc. is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Human Gene Therapy and Human Gene Therapy Methods, Genetic Testing and Molecular Biomarkers, Assay and Drug Development Technologies, and DNA and Cell Biology. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 70 journals, books, and newsmagazines is available at www.liebertpub.com

Mary Ann Liebert, Inc. 140 Huguenot St., New Rochelle, NY 10801-5215
Phone: (914) 740-2100 (800) M-LIEBERT Fax: (914) 740-2101
www.liebertpub.com

Vicki Cohn | EurekAlert!
Further information:
http://www.liebertpub.com

More articles from Life Sciences:

nachricht The “everywhere” protein: honour for the unravellor of its biology
19.10.2017 | Boehringer Ingelheim Stiftung

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>