Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising star of brain found to regulate circadian rhythms

15.04.2011
The circadian system that controls normal sleep patterns is regulated by a group of glial brain cells called astrocytes, according to a study published online on April 14th in Current Biology, a Cell Press publication.

Neuroscientists from Tufts University School of Medicine found that disruption of astrocyte function in fruit flies (Drosophila) led to altered daily rhythms, an indication that these star-shaped glial cells contribute to the control of circadian behavior. These results provide, for the first time, a tractable genetic model to study the role of astrocytes in circadian rhythms and sleep disorders.

According to the National Institute of Neurological Disorders and Stroke, more than 40 million Americans suffer from sleep disorders. Some sleep disorders arise from changes to the internal clock that is modulated by environmental signals, including light. Biologically, the internal clock is known to be composed of a network of neurons that controls rhythmic behaviors. Rob Jackson and his team previously had found that normal circadian rhythms require a glial-specific protein. In the new study, the team demonstrates that glia, and particularly astrocytes, are active cellular elements of the neural circuit that controls circadian rhythms in the adult brain.

"This is significant because glia have been traditionally viewed as support cells rather than independent elements that can regulate neurons and behavior. Neurons have had center stage for some time but current research is establishing the role of glial cells in brain function," said Rob Jackson, PhD, professor of neuroscience at Tufts University School of Medicine (TUSM) and member of the genetics and neuroscience program faculties at the Sackler School of Graduate Biomedical Sciences at Tufts. Jackson is also the director of the Center for Neuroscience Research (CNR) at TUSM.

"We used cellular and molecular genetic techniques to manipulate glial cells in the adult brain of fruit flies and found that such cells regulate neurons of the circadian network and behavior" said first author Fanny Ng, PhD, a postdoctoral associate in the Jackson lab. Ng added, "this is the first study to show that glia can modulate the release of a neuronal factor that is essential for normal circadian behavior."

Jackson's team observed altered rhythms in locomotor activity with glial manipulations, an indication the circadian clock had been disrupted, which in humans can contribute to jet lag or serious sleep disorders.

"In order to develop treatments for these disorders, we need to understand their cellular and molecular bases. Our work suggests that Drosophila can serve as a model system for genetic and molecular approaches to understand astrocyte function and astrocyte-neuron interactions. This undoubtedly will contribute to a better understanding of sleep and other neurological disorders that result from circadian dysfunction," said Jackson.

An additional author on this paper is Michelle Tangredi, PhD, a graduate of the Sackler program in neuroscience and a postdoctoral associate in Jackson's lab.

This research was funded by grants from the National Heart, Lung and Blood Institute and the National Institute of Neurological Disorders and Stroke (NINDS) and a training grant from the National Institute of Child Health and Human Development, all of the National Institutes of Health, and an award from the Russo Family Charitable Foundation Trust through TUSM. The Center for Neuroscience Research is funded by NINDS and Tufts University.

Ng FS, Tangredi MM, and Jackson FR. Current Biology. "Glial cells physiologically modulate clock neurons and circadian behavior in a calcium-dependent manner." DOI 10.1016/j.cub.2011.03.027

About Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences

Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, biomedical sciences, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. Tufts University School of Medicine and the Sackler School undertake research that is consistently rated among the highest in the nation for its effect on the advancement of medical science.

If you are a member of the media interested in learning more about this topic, or speaking with a faculty member at the Tufts University School of Medicine, the Sackler School of Graduate Biomedical Sciences, or another Tufts health sciences researcher, please contact Siobhan Gallagher at 617-636-6586.

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>