Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ripe for biomedical applications

Researchers at the University of Bonn convert skin and umbilical cord cells directly into nerve cells

Until recently, the production of pluripotent "multipurpose" stem cells from skin cells was considered to be the ultimate new development. In the meantime, it has become possible to directly convert cells of the body into one another – without the time-consuming detour via a pluripotent intermediate stage. However, this method has so far been rather inefficient. Scientists from the Bonn Institute of Reconstructive Neurobiology (director: Prof. Dr. Oliver Brüstle) have now developed the method to the point that it can be used for biomedical applications. The scientists are presenting their results in the journal "Nature Methods".

There was much excitement surrounding cell reprogramming with the breakthrough of Shinya Yamanaka. In 2006, the Japanese scientist was able to reprogram skin cells for the first time with the aid of a few control factors into so-called induced pluripotent stem cells (iPS cells) – "multipurpose" cells from which all body cells can in principle be produced. In 2010, Marius Wernig, a former postdoctoral researcher with Prof. Brüstle and meanwhile the director of the institute at Stanford University in California, developed the idea further: Using only three so-called transcription factors, his team was able to perform direct transformation of skin cells into so-called induced neurons (iN). However, the method has so far been rather inefficient: Only a small percentage of the skin cells were converted into the desired nerve cells.

Researchers are increasing yields during transformation of cells

For the scientists at the LIFE & BRAIN Center at the University of Bonn, that was not enough. They are interested in the biomedical utilization of artificially produced human nerve cells for disease research, cell replacement, and the development of active substances. One concept seemed likely: Why not use low-molecular active substances - so-called small molecules - to optimize the process? Julia Ladewig, post-doctoral researcher and lead author of the study, began using such active substances to influence several signaling pathways important for cell development.

By blocking the so-called SMAD signaling pathway and inhibiting glycogen synthase kinase 3 beta (GSK3ß), they increased the transformational efficiency by several times – and were thus able to even simplify the means of extraction. Using only two instead of previously three transcription factors and three active substances, the Bonn researchers were able to convert a majority of the skin cells into neurons. In the end, their cell cultures contained up to more than 80% human neurons. And since the cells divide even further during the conversion process, the actual efficiency is even higher.

Two nerve cells are produced from one skin cell

"We can obtain up to more than 200,000 nerve cells converted in this way from 100,000 skin cells," says Julia Ladewig. In order to find the right combination of active substances, the Bonn scientists are focusing on signaling pathways which are especially important for cell specialization. "The SMAD signaling pathway and also GSK3ß were suspected of inhibiting the conversion of connective tissue cells and pluripotent stem cells into neural cells. The obvious step was to block both of them using corresponding active substances," says Philipp Koch, team leader and senior author responsible for the study, together with Prof. Brüstle. The results were intriguing: "We were able to demonstrate how the genes typical for skin fibroblast were gradually down-regulated and nerve-cell-specific genes were activated during the cell transformation. In addition, the nerve cells thus obtained were functionally active, which also makes them interesting as a source for cell replacement," says Ladewig.
Scientists are now transferring the method to other types of cells

The Bonn scientists have already transferred the method to other types of cells such as, for example, umbilical cord cells. Brüstle clearly foresees the next steps: "First of all, we want to use nerve cells obtained in this way for disease and active substance research. The long-term goal will be to convert cells directly in the body into nerve cells."

Ladewig, J., Mertens, J., Kesavan, J., Doerr, J., Poppe, D., Glaue, F., Herms, S., Wernet, P., Kögler, G., Müller, F.-J., Koch, P., Brüstle, O. (2012) Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nature Methods (DOI: 10.1038/nmeth.1972)

Photos are available here:

Contact Information:

Dr. Philipp Koch & Prof. Dr. Oliver Brüstle
Institut of Reconstructive Neurobiology
University of Bonn
Telephone: +49-228-6885-500

Prof. Dr. Oliver Brüstle | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>