Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rice University study finds possible clues to epilepsy, autism

Rice University researchers have found a potential clue to the roots of epilepsy, autism, schizophrenia and other neurological disorders.

While studying the peripheral nerves of the Drosophila, aka the fruit fly, Rice doctoral student Eric Howlett discovered an unanticipated connection between glutamate – an amino acid and neurotransmitter in much of the food we eat – and phosphoinositide 3-kinase (PI3K), an enzyme that, Howlett found, regulates the activity of neurons.

Howlett and his colleagues, graduate student Curtis Chun-Jen Lin, research technician William Lavery and Michael Stern, a professor of biochemistry and cell biology, discovered that negative feedback mediated by PI3K regulates the excitability of neurons, an issue in a number of ailments that include neurofibromatosis, and that a mutation in a glutamate receptor gene common to both the fruit fly and humans has the ability to disrupt that regulatory mechanism.

Howlett found the Drosophila’s metabotropic glutamate receptor (DmGluRA) gene, when mutated, increased the excitability of the neuron by preventing PI3K from doing its job.

Published online by the Public Library of Science Genetics, the study is the culmination of four years of work that built upon research by Marie-Laure Parmentier and her team at the University of Montpelier, France, to connect glutamate to regulatory functions in the fruit fly.

“As science often goes, we didn’t set out with this hypothesis,” said Howlett, who began the project on funding obtained by Stern from the Department of Defense to study neurofibromatosis. “This all came about as a control for a completely different experiment, and we said, ‘Wow, this is some interesting stuff.’”

What he saw was that the overexpression of PI3K in motor neurons had a dramatic effect. “I noticed under the scope that these nerves were really big, and electrophysiologically, they were really slow. That wasn’t what I expected, and it set me on a path of trying to find out what was going on.”

Howlett’s breakthrough was identifying the negative feedback loop that acts to maintain neuronal excitability at normal levels. “What we found was that glutamate, which is released due to neuronal activity, feeds back onto metabotropic glutamate receptors on the same neurons that released it in the first place. This leads to the activation of PI3K and ultimately to the dampening of the amount of glutamate that is released.” Without that regulation, he said, things inside the cell can go terribly wrong.

“He put his heart and soul into this,” said Stern of Howlett’s exploration of the neuronal chain. “He was working on PI3K because that has a key role in neurofibromatosis. The Department of Defense is very interested in how PI3K is regulated in the nervous system because of its role in tumor formation.”

Discovering the negative feedback loop that keeps neurons stable was key, said Stern, but not the end of the investigation. “We know that glutamate activates mGluR and PI3K, but we don’t know how,” he said. “There are almost certainly a number of intermediates that remain to be identified, and we have several candidates we’re looking into.

“We’re finding a mechanistic link among these molecules that hadn’t been previously appreciated,” Stern said.

“Obviously the next step would be to test whether these same molecules are playing similar roles in mammalian neurons,” said Howlett, who will leave Rice in the spring to pursue postdoctoral cancer research at Virginia Commonwealth University. A native Houstonian, he earned his bachelor’s in biology at the University of Houston-Clear Lake.

Howlett said mGluRs had already been targeted in possible treatments for schizophrenia, epilepsy and other “excitability” diseases, so it’s not a stretch to think his research could lead to even more strategies in treating neurological ailments.

“Actually, all of the molecules involved in our model have been implicated in one way or another with neurological diseases, but no one has been able to link them together into a coherent explanation of the diseases,” he said. “Our model provides a novel framework that could really go a long way toward doing that.”

The paper can be found at:

David Ruth | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>