Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice cultivates green batteries from plant

12.12.2012
Extract of madder plant works as environmentally friendly lithium-ion cathode
Here’s a reason to be glad about madder: The climbing plant has the potential to make a greener rechargeable battery.

Scientists at Rice University and the City College of New York have discovered that the madder plant, aka Rubia tinctorum, is a good source of purpurin, an organic dye that can be turned into a highly effective, natural cathode for lithium-ion batteries. The plant has been used since ancient times to create dye for fabrics.

The discovery is the subject of a paper that appears today in Nature’s online, open-access journal Scientific Reports.

The goal, according to lead author Arava Leela Mohana Reddy, a research scientist in the Rice lab of materials scientist Pulickel Ajayan, is to create environmentally friendly batteries that solve many of the problems with lithium-ion batteries in use today.

“Green batteries are the need of the hour, yet this topic hasn’t really been addressed properly,” Reddy said. “This is an area that needs immediate attention and sustained thrust, but you cannot discover sustainable technology overnight. The current focus of the research community is still on conventional batteries, meeting challenges like improving capacity. While those issues are important, so are issues like sustainability and recyclability.”

While lithium-ion batteries have become standard in conventional electronics since their commercial introduction in 1991, the rechargeable units remain costly to manufacture, Reddy said. “They’re not environmentally friendly. They use cathodes of lithium cobalt oxide, which are very expensive. You have to mine the cobalt metal and manufacture the cathodes in a high-temperature environment. There are a lot of costs.

“And then, recycling is a big issue,” he said. “In 2010, almost 10 billion lithium-ion batteries had to be recycled, which uses a lot of energy. Extracting cobalt from the batteries is an expensive process.”

Reddy and his colleagues came across purpurin while testing a number of organic molecules for their ability to electrochemically interact with lithium and found purpurin most amenable to binding lithium ions. With the addition of 20 percent carbon to add conductivity, the team built a half-battery cell with a capacity of 90 milliamp hours per gram after 50 charge/discharge cycles. The cathodes can be made at room temperature, he said.

“It’s a new mechanism we are proposing with this paper, and the chemistry is really simple,” Reddy said. He suggested agricultural waste may be a source of purpurin, as may other suitable molecules, which makes the process even more economical.

Innovation in the battery space is needed to satisfy future demands and counter environmental issues like waste management, “and hence we are quite fascinated by the ability to develop alternative electrode technologies to replace conventional inorganic materials in lithium-ion batteries,” said Ajayan, Rice’s Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry.

“We’re interested in developing value-added chemicals, products and materials from renewable feedstocks as a sustainable technology platform,” said co-lead author George John, a professor of chemistry at the City College of New York-CUNY and an expert on bio-based materials and green chemistry. “The point has been to understand the chemistry between lithium ions and the organic molecules. Now that we have that proper understanding, we can tap other molecules and improve capacity.”

Recent work by the Ajayan Group combines silicon and a porous nickel current collector in a way that has proven effective as a high-capacity anode, the other electrode in a lithium-ion battery. That research was reported recently in the American Chemical Society journal Nano Letters.

But Reddy hopes to formulate completely green batteries. The team is looking for organic molecules suitable for anodes and for an electrolyte that doesn’t break the molecules down. He fully expects to have a working prototype of a complete organic battery within a few years. “What we’ve come up with should lead to much more discussion in the scientific community about green batteries,” he said.

Co-authors of the paper are visiting scholar Porramate Chumyim and former graduate student Sanketh Gowda of Rice; postdoctoral researcher Subbiah Nagarajan, facilities manager Padmanava Pradhan and graduate student Swapnil Jadhav of the City College of New York; and Madan Dubey of the U.S. Army Research Laboratory.

The research was funded by the Army Research Office.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>