Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Retracing Citrus’ Earliest Roots to Find Clues for Healthier Future

11.06.2014

That orange you’re enjoying may have been grown in Florida, but its deepest ancestral roots stretch back more than 5 million years, all the way to two wild citrus species from Southeast Asia.

University of Florida scientists led an international research team that analyzed the genome sequences of 10 diverse citrus varieties for the first time.

Their findings, published online Sunday by the journal Nature Biotechnology, could help the citrus industry find and deploy genes for resistance to citrus greening, a bacterial infection devastating crops in North America.

Fred Gmitter, a UF Institute of Food and Agricultural Sciences faculty member, led the team of researchers from the United States, France, Italy, Spain and Brazil as part of a decade-long project to sequence and understand citrus genomes.

... more about:
»Citrus »crops »genes »genomes »resistance »sequences »species »sweet »varieties

They analyzed and compared the genome sequences of sweet and sour oranges, along with several important mandarin and pummelo varieties. By understanding the relationships between the various cultivated species they describe as having “very narrow genetic diversity,” the researchers hope to enable genetic modifications and traditional breeding, which could lead to crops more resistant to disease and environmental stress, as well as better flavor and health-promoting benefits.

“Citrus has incestuous genes - nothing is pure,” said Gmitter, who is based at UF’s Citrus Research and Education Center in Lake Alfred. “Now that we understand the genetic structure of sweet orange, for example, we can imagine reproducing early citrus domestication using modern breeding techniques that could draw from a broader pool of natural variation and resistance.”

New citrus trees are almost always produced by grafting, a method of propagation that binds the fruit bearing part of one tree to the root system of another. That produces trees that more quickly bear genetically identical, uniform, high quality fruit. But because of that uniformity, if one tree is susceptible to disease, they all are.

Citrus is the world’s most widely cultivated fruit crop. In Florida, it is a $9 billion industry, employing 75,000. But it is under attack from a tiny bug, the Asian citrus psyllid, which sucks on leaf sap and leaves behind the citrus greening bacteria.

The disease, which renders fruit unsuitable for sale and eventually kills trees, could wipe out the industry in the next decade if a viable treatment is not found.

UF/IFAS researchers have attempted everything from trying to eradicate the psyllid to breeding citrus rootstocks that show better greening resistance. Current control methods include removing and destroying infected trees, controlling the psyllid, and providing additional nutrition in an attempt to keep infected trees productive.

Citrus was first domesticated in Southeast Asia thousands of years ago before spreading throughout Asia, Europe, and the Americas via trade.

One of the two wild species, Citrus maxima, gave rise to today’s cultivated pummelo, the largest citrus fruit, which can often weigh 2 to 4 pounds or more. The small, easily peeled mandarins were, in contrast, found to be genetic mixes of a second species (Citrus reticulata, the ancestral mandarin species) and pummelo. Sweet orange, the world’s most widely grown citrus variety, was found to be a complex hybrid, with mixed bits and pieces of the mandarin and pummelo genomes. Seville, or sour orange, commonly used in marmalade, is a simple hybrid between the two ancestral species.

The U.S. Department of Energy’s Joint Genome Institute, Genoscope in France, the Institute for Genomic Applications in Italy, and 454 Life Sciences, a Roche company, contributed to the citrus genome project.

Kimberly Moore Wilmoth | newswise
Further information:
http://www.ufl.edu

Further reports about: Citrus crops genes genomes resistance sequences species sweet varieties

More articles from Life Sciences:

nachricht Rapid adaptation to a changing environment
28.04.2016 | Christian-Albrechts-Universität zu Kiel

nachricht Tiny microscopes reveal hidden role of nervous system cells
28.04.2016 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

Im Focus: Measuring the heat capacity of condensed light

Liquid water is a very good heat storage medium – anyone with a Thermos bottle knows that. However, as soon as water boils or freezes, its storage capacity drops precipitously. Physicists at the University of Bonn have now observed very similar behavior in a gas of light particles. Their findings can be used, for example, to produce ultra-precise thermometers. The work appears in the prestigious technical journal "Nature Communications".

Water vapor becomes liquid under 100 degrees Celsius – it condenses. Physicists speak of a phase transition. In this process, certain thermodynamic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Possible Extragalactic Source of High-Energy Neutrinos

28.04.2016 | Physics and Astronomy

University of Illinois researchers create 1-step graphene patterning method

28.04.2016 | Materials Sciences

Rapid adaptation to a changing environment

28.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>