Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New resource to unlock the role of microRNAs

Comprehensive set of mutated mouse microRNAs will drive research

A new resource to define the roles of microRNAs is announced today in Nature Biotechnology. The resource, called mirKO, gives researchers access to tools to investigate the biological role and significance for human health of these enigmatic genes.

mirKO is a "library" of mutant mouse embryonic stem (ES) cells in which individual, or clustered groups of microRNA genes, have been deleted. Using these tools researchers can create cells or mice lacking specific microRNAs, study expression using fluorescent markers, or inactivate the gene in specific tissues or at specific times in development. This is the first mammalian microRNA knockout resource; the only other comprehensive resource of mutated microRNA genes is that for the nematode worm.

microRNAs – first named only ten years ago – are encoded by more than 500 genes that are predicted to regulate about one third of protein-coding genes. Consisting of short stretches of 21 to 23 nucleotides, microRNAs act by interfering with the activity of messenger RNAs. Studies over the past five years have shown that microRNAs are likely to play important roles in disease such as cancer and disorders of the heart, the immune system and auditory systems.

"We have generated a resource of microRNA knockout alleles in mouse ES cells that are standardized with respect to design and genetic background that researchers can access through repositories," says Dr Haydn Prosser, lead author on the research from the Wellcome Trust Sanger Institute. "In many cases, microRNAs with overlapping messenger RNA target specificities occur at multiple locations throughout the genome. To address these complexities a comprehensive resource is valuable to enable the creation of compound mutants in cells or mice."

The first step was to develop DNA vectors to target the microRNA genes: the team produced two alternative vectors that could, if desired, be used to knock out both copies of a particular microRNA in mouse ES cells.

The team inserted newly designed DNA vectors in place of the microRNA genes, successfully knocking out about 400 so far.

"The biology of microRNAs will be revealed only when we can rigorously examine their activity, their role in individual tissues, and at specific times in development," says Professor Allan Bradley, senior author on the study and Director Emeritus of the Sanger Institute. "Our paper shows that the tools within mirKO can do that.

"We have tagged genes with a colour reporter, developed a mutation that can be induced when required and produced mice carrying mutations. This is an important proof of principle."

In previous research, Professor Bradley's team showed that a specific microRNA played a role in the development of a component of the immune system: in its absence, mice develop signs similar to those of human autoimmune disease and are less resistant to infection.

The resource is built on cassettes of genetic components that can be swapped through a technology called recombinase mediated cassette exchange (RMCE). "We have designed the targeted alleles to be adaptable in order that researchers can efficiently alter particular microRNA loci in a multitude of alternative ways to provide information additional to straightforward null mutants. In this respect we have developed a research toolbox that will help researchers define the role of microRNAs in health and disease,"says Haydn Prosser.

In one configuration the wildtype microRNA locus was reconstituted while being flanked by recombinase sites in order to facilitate time- or tissue-specific expression. A second RMCE cassette contains a gene that produces a red fluorescent protein: when this is swapped into a mutated microRNA gene, it reflects the activity of the mouse microRNA gene so its activity can be studied. The team showed that this method accurately reflected the known activity of two microRNA loci.

The developing suite of tools has already been invaluable to researchers. "This is clearly a valuable resource which will make research easier and more efficient," says Eric Miska, a group leader at the Wellcome Trust/Cancer Research UK Gurdon Institute in Cambridge."In our research into regulatory RNAs, we are using this resource to investigate the role of individual microRNAs during early development and how their deregulation might contribute to the etiology of cancer."

Information and details of the mirKO resource can be accessed through the International Mouse Knockout Consortium ( The biological materials are being transferred to repositories for distribution to the research community.

Notes to Editors

Publication Details
Prosser HM et al (2011). A resource of vectors and ES cells for targeted deletion of microRNAs in mice. Nature Biotechnology, published online on Sunday, 7 August 2011

doi: 10.1038/nbt.1929.


This work was funded by the Wellcome Trust.

The International Knockout Mouse Consortium database was developed with funding from the European Union and the US National Institutes of Health.

The Wellcome Trust/Cancer Research UK Gurdon Institute

The Wellcome Trust/Cancer Research UK Gurdon Institute is part of Cambridge University. Funding from its two main sponsors, and other sources, supports research into the complementary areas of Cancer and Developmental Biology.

The Wellcome Trust Sanger Institute, which receives the majority of its funding from the Wellcome Trust, was founded in 1992. The Institute is responsible for the completion of the sequence of approximately one-third of the human genome as well as genomes of model organisms and more than 90 pathogen genomes. In October 2006, new funding was awarded by the Wellcome Trust to exploit the wealth of genome data now available to answer important questions about health and disease.

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.

Don Powell | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>