Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New resource to unlock the role of microRNAs

08.08.2011
Comprehensive set of mutated mouse microRNAs will drive research

A new resource to define the roles of microRNAs is announced today in Nature Biotechnology. The resource, called mirKO, gives researchers access to tools to investigate the biological role and significance for human health of these enigmatic genes.

mirKO is a "library" of mutant mouse embryonic stem (ES) cells in which individual, or clustered groups of microRNA genes, have been deleted. Using these tools researchers can create cells or mice lacking specific microRNAs, study expression using fluorescent markers, or inactivate the gene in specific tissues or at specific times in development. This is the first mammalian microRNA knockout resource; the only other comprehensive resource of mutated microRNA genes is that for the nematode worm.

microRNAs – first named only ten years ago – are encoded by more than 500 genes that are predicted to regulate about one third of protein-coding genes. Consisting of short stretches of 21 to 23 nucleotides, microRNAs act by interfering with the activity of messenger RNAs. Studies over the past five years have shown that microRNAs are likely to play important roles in disease such as cancer and disorders of the heart, the immune system and auditory systems.

"We have generated a resource of microRNA knockout alleles in mouse ES cells that are standardized with respect to design and genetic background that researchers can access through repositories," says Dr Haydn Prosser, lead author on the research from the Wellcome Trust Sanger Institute. "In many cases, microRNAs with overlapping messenger RNA target specificities occur at multiple locations throughout the genome. To address these complexities a comprehensive resource is valuable to enable the creation of compound mutants in cells or mice."

The first step was to develop DNA vectors to target the microRNA genes: the team produced two alternative vectors that could, if desired, be used to knock out both copies of a particular microRNA in mouse ES cells.

The team inserted newly designed DNA vectors in place of the microRNA genes, successfully knocking out about 400 so far.

"The biology of microRNAs will be revealed only when we can rigorously examine their activity, their role in individual tissues, and at specific times in development," says Professor Allan Bradley, senior author on the study and Director Emeritus of the Sanger Institute. "Our paper shows that the tools within mirKO can do that.

"We have tagged genes with a colour reporter, developed a mutation that can be induced when required and produced mice carrying mutations. This is an important proof of principle."

In previous research, Professor Bradley's team showed that a specific microRNA played a role in the development of a component of the immune system: in its absence, mice develop signs similar to those of human autoimmune disease and are less resistant to infection.

The resource is built on cassettes of genetic components that can be swapped through a technology called recombinase mediated cassette exchange (RMCE). "We have designed the targeted alleles to be adaptable in order that researchers can efficiently alter particular microRNA loci in a multitude of alternative ways to provide information additional to straightforward null mutants. In this respect we have developed a research toolbox that will help researchers define the role of microRNAs in health and disease,"says Haydn Prosser.

In one configuration the wildtype microRNA locus was reconstituted while being flanked by recombinase sites in order to facilitate time- or tissue-specific expression. A second RMCE cassette contains a gene that produces a red fluorescent protein: when this is swapped into a mutated microRNA gene, it reflects the activity of the mouse microRNA gene so its activity can be studied. The team showed that this method accurately reflected the known activity of two microRNA loci.

The developing suite of tools has already been invaluable to researchers. "This is clearly a valuable resource which will make research easier and more efficient," says Eric Miska, a group leader at the Wellcome Trust/Cancer Research UK Gurdon Institute in Cambridge."In our research into regulatory RNAs, we are using this resource to investigate the role of individual microRNAs during early development and how their deregulation might contribute to the etiology of cancer."

Information and details of the mirKO resource can be accessed through the International Mouse Knockout Consortium (http://www.knockoutmouse.org/martsearch). The biological materials are being transferred to repositories for distribution to the research community.

Notes to Editors

Publication Details
Prosser HM et al (2011). A resource of vectors and ES cells for targeted deletion of microRNAs in mice. Nature Biotechnology, published online on Sunday, 7 August 2011

doi: 10.1038/nbt.1929.

Funding

This work was funded by the Wellcome Trust.

The International Knockout Mouse Consortium database was developed with funding from the European Union and the US National Institutes of Health.

The Wellcome Trust/Cancer Research UK Gurdon Institute

The Wellcome Trust/Cancer Research UK Gurdon Institute is part of Cambridge University. Funding from its two main sponsors, and other sources, supports research into the complementary areas of Cancer and Developmental Biology. http://www.gurdon.cam.ac.uk/about.html

The Wellcome Trust Sanger Institute, which receives the majority of its funding from the Wellcome Trust, was founded in 1992. The Institute is responsible for the completion of the sequence of approximately one-third of the human genome as well as genomes of model organisms and more than 90 pathogen genomes. In October 2006, new funding was awarded by the Wellcome Trust to exploit the wealth of genome data now available to answer important questions about health and disease. http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.

Don Powell | EurekAlert!
Further information:
http://www.sanger.ac.uk
http://www.wellcome.ac.uk

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>