Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unzip MRSA and discover route for vaccine

18.01.2011
URMC team presents latest data at National Orthopaedics Meeting

University of Rochester Medical Center orthopaedic scientists are a step closer to developing a vaccine to prevent life-threatening methicillin-resistant staphylococcus aureus (MRSA) infections following bone and joint surgery.

Other MRSA vaccine research has failed to produce a viable option for patients because of the inability to identify an agent that can break through the deadly bacteria's unique armor. Most other research has targeted the surface of the bacteria, but the URMC team discovered an antibody that reaches beyond the microbe's surface and can stop the MRSA bacteria from growing, at least in mice and in cell cultures.

The Orthopaedic Research Society invited URMC researchers to present their findings on Jan. 16, 2011, at the ORS annual meeting in Long Beach, Calif. The team is led by Edward M. Schwarz, Ph.D., professor of Orthopaedics and associate director of the URMC Center for Musculoskeletal Research. John Varrone, a second-year graduate student in Schwarz's lab, will discuss the data at ORS and the ongoing search for attractive molecular candidates for use in a vaccine.

Staph infection is the leading cause of osteomyelitis, a serious bacterial infection of the bone. Up to half of these infections are due to MRSA, a particular strain of staph known as a "superbug" because of its antibiotic resistance. MRSA causes nearly 500,000 hospitalizations and 19,000 deaths a year in the United States. Although improvements in surgical techniques and use of prophylactic antibiotics prevents some MRSA infections, osteomyelitis is expected to remain a serious problem in the future as people live longer and request more joint replacements and reconstructive surgery.

Management of MRSA infections due to bone and joint surgery is very challenging, Schwarz said, and therefore a vaccine to prevent the infection is badly needed.

It is difficult to pin down the source of most post-surgical MRSA infections, but the health and financial consequences are severe. Hospital stays can last up to six months. Standard treatment includes removing the MRSA-colonized prosthetic joint replacement, then an extensive washing and draining of the infected area in an attempt to clear out all bacteria before it seeds in nearby tissue and bone. Antibiotic spacers are usually placed near the joint for six to eight weeks.

A second joint replacement is an option only if the antibiotic-spacer treatment is successful and the health of the patient remains stable. However, the re-infection rate is very high (40 to 50 percent) and remains a risk for months or even years after the initial assault. In some cases the patient never fully regains the use of the infected joint, said Regis O'Keefe, chief of Orthopaedics at URMC and an expert in the treatment of MRSA.

"It's essential that we have mechanisms in place to prevent this awful infection," O'Keefe said. "We are very excited about our vaccine research. It'll have a phenomenal impact on individuals locally and across the country if we are successful."

Breaking the Zipper

Schwarz, Varrone, and colleagues hypothesized that the best way to attack staph aureus was to target the glucosaminidase (Gmd) protein contained in the deadly bug. Gmd is known to act as a zipper on the bacteria, opening the impenetrable armor (cell wall) during cell division. In the absence of Gmd, staph aureus cannot replicate efficiently, dramatically reducing its ability to cause infections. Thus, if they could find an agent that inhibits bacterial growth and prevents the cell wall from closing during binary fission, Schwarz reasoned, perhaps the bacteria itself could be destroyed.

The abstract presented at ORS describes two key findings. First, the Schwarz lab discovered four anti-Gmd monoclonal antibodies that disrupt the growth of MRSA bacteria in cell cultures, by breaking the zipper and preventing cell division. The team also demonstrated exactly how the antibody works. Since MRSA is inclined to grow rapidly, as single cells, they sought an antigen that forced the bacteria cells to clump. Electron microscopy images of the bacteria exposed to the anti-Gmd antibodies show evidence of exploding staph; however, additional research is being done to confirm this mechanism of action.

Second, researchers demonstrated that when mice were infused with the anti-Gmd antibody, and then exposed to MRSA, only about half of the mice developed the infection. As expected, Schwarz said, protection was dependent upon vaccine dose, with the lowest dose offering the least amount of protection.

"A vaccine in humans would probably not be a foolproof approach to preventing infection 100 percent of the time," Schwarz said. "However, even if we could reduce the risk of MRSA by 35 percent, that would be an enormous improvement in the field."

Researchers are seeking anti-Gmd agents with the best properties for binding to Gmd and making the bacteria less viable. This work is being led by scientists at Codevax LLC, a company started by the University of Rochester and private venture capitalists to co-develop and promote unlicensed vaccine technologies for infectious diseases. John Daiss, a scientist at Codevax, is leading the effort to find existing monoclonal antibodies with strong safety profiles – such as those used to develop the cancer drugs Herceptin and Rituxan – so that researcher can move quickly from the bench to initial clinical trials, Schwarz said.

Stephen Dewhurst, Ph.D., chair and dean's professor of Microbiology and Immunology at URMC is president of Codevax. John Daiss is employed by Codevax. Edward Schwarz, John Varrone and Regis O'Keefe do not have a financial interest in the company, however, the University of Rochester holds an equity interest in Codevax.

The MRSA vaccine project is funded, in part, by Codevax. Additional funding was provided by URMC Musculoskeletal Research, URMC Technology Development Grant, and the U.S. Department of Health and Human Services.

Leslie Orr | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>