Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Unlock Genetic Secrets to Developmental Dysplasia of the Hip

06.06.2013
Research from Thomas Jefferson University is laying the foundation for a genetic test to accurately identify hip dysplasia in newborns so that early intervention can be initiated to promote normal development.

This research from Jefferson Orthopedics physician-scientists is currently available in the Journal of Bone and Mineralizing Research (JBMR) online at http://onlinelibrary.wiley.com/doi/10.1002/jbmr.1999/abstract.

The researchers studied four generations of a Utah family affected by developmental dysplasia of the hip (DDH) in most generations.

One in 1,000 newborns is affected by DDH. Its grossest forms are easily detected at birth, though mild cases often go undetected and are the leading cause of premature degeneration of the hip joint among 20-40 year olds—accounting for 40 percent of such cases.

In patients with DDH the acetabulum never completely forms around the head of the femur, leading to dislocation of the femur, difficult joint function and accelerated wear of the articular cartilage, resulting in arthritis.

“If we can detect DDH susceptibility earlier, we can employ non-invasive therapies to allow the hip socket to fully develop in newborns,” says George Feldman, PhD, DMD, assistant professor of Orthopaedics at Thomas Jefferson University and lead investigator on the study. Interventions such as the Pavlik harness gently position the baby’s hips so that they are appropriately aligned in the joint and the hip joint is secure, facilitating normal growth and development.

“We know that DDH has genetic and environmental factors. Moreover there are certain pockets of high prevalence in Japan, Italy and Mediterranean countries,” says Dr. Feldman.

A large 72-member, four-generation Utah family affected by DDH in most generations—one of the largest documented families showing inter-generational transmission of DDH— was approached by Jefferson researchers and their colleagues at the University of Utah to participate in this study.

Among the members of the family – who the researchers tested at a family reunion - 11 had three or more signs of DDH and were considered to be unequivocably affected. Thirteen individuals had one or two signs of DDH and a questionable diagnosis. DNA analysis showed a mutation co-inherited by all affected family members.

This variant is a genetic mutation on chromosome 3 in a chemokine receptor which functions as a receptor for a chemical messenger that may affect the maturation of cartilage forming cells, possibly delaying their development.

Even some of those who had fewer signs of the disease were also found to have the disease variant.

“The lack of overt signs of DDH among some members of the family who transmitted the DNA variant is understandable in light of the fact that DDH is a complex disorder with genetic, epigenetic and environmental causes,” says Dr. Feldman. Environmental risk factors include breech presentation at birth, low levels of amniotic fluid during pregnancy and bearing only one child.

Feldman thanks the family for helping the researchers better understand the genetics of DDH in order to help protect future generations from the disease. “Their contribution was essential to our research and has advanced the study of DDH,” he says.

The genetic mutations complete effect on the development of the acetabulum in DDH patients is currently under investigation in animal models. In addition, further testing of the overall DDH population is being performed to determine the prevalence of this mutation.

While this study shows a significant genetic risk factor shared by family members, it is not yet clear how this translates to the rest of the affected DDH population, but it has allowed researchers to move closer to a sensitive and specific test for the genetic variants that cause DDH. “If this could be achieved,” says Dr. Feldman, “It could make a huge difference for these patients later in life. We think we may have found a clue to DDH susceptibility that has eluded the orthopedic community for a long time.”

Thomas Jefferson University
Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Founded in 1824, TJU includes Jefferson Medical College (JMC), one of the largest private medical schools in the country and ranked among the nation’s best medical schools by U.S. News & World Report, and the Jefferson Schools of Nursing, Pharmacy, Health Professions, Population Health and the College of Graduate Studies. Jefferson University Physicians is TJU’s multi-specialty physician practice consisting of the full-time faculty of JMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Lee-Ann Landis | Newswise
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>