Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover neural origins of expert intuition

24.01.2011
New findings reported this week in Science by researchers at the RIKEN Brain Science Institute (BSI) shed first-ever light on the neural mechanisms that enable board game experts to quickly generate optimal moves.

What makes experts different from the rest of us? Over the past century, this question has prompted a range of studies on various aspects of human cognition, revealing clues about the psychological and neurological origins of intelligence, perception and memory. While board games such has chess have provided the most productive setting for such studies, the neural mechanisms underlying cognitive expertise in board game play nonetheless remain poorly understood.

To clarify these mechanisms, the researchers used fMRI to study the brain activity of professional and amateur players of shogi, a Japanese board game. Unlike amateurs, professional shogi players are able to quickly perceive board patterns and generate moves without conscious thought, a unique intuitive capacity which grants them their superior skill. Imaging studies have identified processes specific to the brains of chess experts, but no research has yet clarified the neural substrates for expert intuition.

Using spot games of shogi, the researchers have now pinpointed for the first time two brain regions involved in specific aspects of such intuition. Activity in the precuneus of the parietal lobe, a brain region responsible for integrating sensory information, was observed when professional players perceived and recognized realistic board patterns. Rapid generation of next-moves, in contrast, was identified with activity in the caudate nucleus of the basal ganglia. Among professional players, the results moreover highlight a strong correlation between these regions during next-move generation, suggesting that the precuneus-caudate circuit in their brains has been honed to this specific task.

By shedding first-ever light on the elusive origins of expert intuition, these findings establish a crucial link between brain science and cognitive psychology research, opening the door to fundamental insights on brain function and applications in the design of new types of expert systems.

For more information, please contact:

Dr. Keiji Tanaka
Cognitive Brain Mapping Laboratory
RIKEN Brain Science Institute
Tel: +81-(0)48-467-9342 / Fax: +81-(0)48-467-7100
Brain Science Research Planning Section
RIKEN Brain Science Institute
Tel: +81-(0)48-467-9757 / Fax: +81-(0)48-467-4914
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: koho(at)riken.jp

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com
http://www.researchsea.com/html/article.php/aid/5800/cid/1?

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>