Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers track protein 'hitchhiker' in fluorescent worms

07.04.2015

Understanding healthy cell division could have implications for cancer patients, embryos

Dividing cells--whether they're in an embryo or an adult--rely on the right processes happening at the right time to turn out healthy.


Lab photographs of the dividing cells are shown. The round, sun-like structures in each cell are the centrosomes. The fluorescent-tagged beta-catenin is the singular, oblong structure of contrasting color.

Photo courtesy of Bryan Phillips.

Now, researchers at the University of Iowa have identified a mechanism that dividing cells in worms use to ensure their proper development, and they believe the same process could be going on in humans. The mechanism, unknown until now, describes one part of the cell, called the centrosome, as an "internal timekeeper"--like a train conductor. A crucial protein in charge of gene expression, beta-catenin, is described as a "hitchhiker"--it jumps onboard the cellular train and helps cells grow the way they should.

The researchers believe that the hitchhiker protein attaches to the timekeeping centrosome, only so that it can be properly regulated and divided out in the correct amounts to the newly forming cells.

"The majority of tumors have severe centrosome abnormalities," says UI integrated biology doctoral candidate and first author Setu Vora. "So it's entirely possible that this kind of mechanism at the centrosome may be relevant in human diseases, such as cancer."

The researchers believe their discovery could have implications for cancer research, and lend greater understanding to how we develop.

"We think it's crucial to understand how these basic mechanisms work in order to better understand human development and disease," says Bryan Phillips, UI assistant professor of biology and corresponding author.

The Timekeeper's Mechanism

A key part of all animal cells, the centrosome, acts as the cell division captain--it is responsible for making sure new cells get equal portions of DNA when they are created. Now, the UI researchers say, the centrosome also acts as the timekeeper during cell division, specifically for another crucial member in the process, beta-catenin.

Beta-catenin is a protein that controls gene expression. Basically, it is present during cell division but starts to degrade, limiting how much of itself is given to the daughter cells. How much beta-catenin each cell gets during division helps to determine what kind of cell it is: arm, leg, liver, or otherwise. The researchers found that beta-catenin only knows how much of itself to give out to newly forming cells because it attaches to the centrosome--this is where the centrosome's timekeeper responsibilities come in.

Centrosomes mature and grow inside of cells just as the cells start to divide. It might seem counterintuitive to have a crucial part of a cell become active just before the cell is splitting apart, but it means that a mature centrosome could serve as an internal indicator that the cell is about to divide. At that same moment, beta-catenin attaches itself to the centrosome, like a hitchhiker, Phillips says. Attached, the Timekeeper and the Hitchhiker start to work together.

Lab photographs of dividing cells

Lab photographs of the dividing cells. The round, sun-like structures in each cell are the centrosomes. The fluorescent-tagged beta-catenin is the singular, oblong structure of contrasting color. Photo courtesy of Bryan Phillips.

Because of its hitchhiking ability, the two newly forming daughter cells inherit little beta-catenin. This allows for tight control of the levels of newly formed beta-catenin; one cell can then accumulate low beta-catenin levels, and one high levels. The difference in beta-catenin will dictate what kind of tissue the cells will become. The centrosome, with its eye on the clock, lets this process go on just long enough for the new cells to get as much beta-catenin as each one needs to become the properly functioning tissue it is supposed to be, before the centrosome and beta-catenin detach, and the process ends.

The Method, and Beyond

The researchers were able to track the entire mechanism in their model system, a transparent roundworm called C. elegans. They used a well-known technique to put a fluorescent tag on the beta-catenin proteins into the worm, and they could monitor the process under a fluorescent microscope. The researchers inserted a manipulated piece of DNA into the genome of the worm, consisting of the information that encodes the protein, and also the information that encodes the fluorescent tag. That way, every time the worm produced more of the protein, it showed up as a fluorescent green dot.

Those collections of dots got brighter the more beta-catenin was in one area, and the researchers could measure the intensity of that fluorescent light in each cell with a charge-coupled device (CCD) camera attached to their microscope. That allowed them to not only see that the beta-catenin was attached to the centrosome, but also, how much of it was being produced.

As it turns out, the only reason beta-catenin attaches to the centrosome at all is to be regulated, the researchers say. When they blocked beta-catenin's ability to hitchhike on the centrosome, the daughter cells that were supposed to receive low levels of beta-catenin ended up with too much. Some of those cells end up converting to completely different tissue types.

The study, "Centrosome-Associated Degradation Limits beta-catenin Inheritance by Daughter Cells after Asymmetric Division," presented in April in the journal Current Biology, has implications for the growth of cancer cells, Phillips says.

"In adults, this might be important because we need to keep beta-catenin levels regulated in stem cells. If there is too much beta-catenin in our stem cells, the cells can divide too quickly and may become cancerous," Phillips says.

Beta-catenin regulation is clinically important. Nearly all intestinal tumors involve some measure of beta-catenin regulation defect, and early birth defects involving beta-catenin result in miscarriage. Additionally, beta-catenin helps early embryonic patterning decisions in mammals, including core pathways involved in development of limbs, Phillips says.

Continuing to study the centrosome with the understanding of this mechanism, and how proteins are distributed to new cells, could lead to crucial new medical information. It is a couple steps out from this initial discovery, but the mechanism opens the door to a world of understanding about our cells, Phillips says.

###

The study was funded through a grant from the American Cancer Society and the Holden Comprehensive Cancer Center, a grant from the Roy J. Carver Charitable Trust, and an Evelyn Hart Watson fellowship.

Media Contact

Brittany Borghi
brittany-borghi@uiowa.edu
319-384-0048

 @UIowaResearch

http://www.uiowa.edu 

Brittany Borghi | EurekAlert!

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>