Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers testing virus-gene therapy combination against melanoma

Researchers at the Moores UCSD Cancer Center are injecting a modified herpes virus into melanoma tumors, hoping to kill the cancer cells while also bolstering the body's immune defenses against the disease.

Gregory Daniels, MD, PhD, assistant clinical professor of medicine at the UC San Diego School of Medicine and his co-workers are comparing the modified virus treatment, called OncoVEX GM-CSF, to general immune system stimulation with the immune-boosting protein GM-CSF in an international phase III trial for patients with advanced melanoma. The Moores UCSD Cancer Center is the only site in San Diego for the clinical trial.

Melanoma, the most dangerous kind of skin cancer, takes about 60,000 lives a year in this country. "Melanoma has always been curable, but only in a small fraction of patients," Daniels said. "Local tumor killing with immune activation may provide an additional tool to increase this number to a larger population of cancer patients."

According to Daniels, the injected virus appears to preferentially infect cancer cells, leading to tumor death. The expression of the GM-CSF protein may also direct an immune attack against both infected and non-infected tumors. The virus has in essence been genetically reprogrammed to target the cancer cells, while healthy cells remain relatively untouched. The research team is testing the two-pronged attack of direct tumor cell killing and immune activation. Their aim is to see if it will help those patients whose cancer has spread to other areas of the body to live longer without disease than has been possible with standard therapies.

While the field of cancer immunotherapy – employing the body's own immune system to fight cancer – has had mixed results to date, Daniels remains hopeful. Earlier stage testing showed that about 26 percent of patients receiving the OncoVEX GM-CSF therapy had either a partial or complete response, meaning their cancer either stopped growing or regressed.

Daniels said that while the therapy has been shown in earlier testing to destroy the injected tumors to some degree, it also causes a general change in the immune system, occasionally shrinking uninjected tumors. "It's a more active type of immunotherapy, causing a cascade of immune system activity in the body," he said.

The team hopes to enroll 30 patients with advanced melanoma. The cancer in these individuals cannot be removed surgically, and the patients must have had one failed prior therapy. The goal of the trial is not necessarily to cure the patients of their cancer, but to enable them to live disease-free for at least six months and longer. In all, 360 patients worldwide will ultimately participate in the trial. Twice as many patients will get the virus as will get the GM-CSF alone. As this is not a blinded study, those running the trial will know who is getting which therapy, but the treatments are randomly assigned to participants.

The virus infection-immune system-boosting approach could potentially be used for other types of cancers, Daniels said, such as colon, breast, prostate, bladder and lung.

OncoVEX GM-CSF is made by BioVex, a Woburn, MA-based biotechnology company.

For more information about this trial, please contact Trang Tran, clinical trials coordinator, at 858-822-4171 or

The Moores UCSD Cancer Center is one of the nation's 41 National Cancer Institute-designated Comprehensive Cancer Centers, combining research, clinical care and community outreach to advance the prevention, treatment and cure of cancer.

Steve Benowitz | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>