Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Successfully Reprogram Keratinocytes Attached to a Single Hair

21.10.2008
The first reports of the successful reprogramming of adult human cells back into so-called induced pluripotent stem (iPS) cells, which by all appearances looked and acted liked embryonic stem cells created a media stir. But the process was woefully inefficient: Only one out of 10,000 cells could be persuaded to turn back the clock.

Now, a team of researchers led by Juan Carlos Izpisúa Belmonte at the Salk Institute for Biological Studies, succeeded in boosting the reprogramming efficiency more than 100fold, while cutting the time it takes in half. In fact, they repeatedly generated iPS cells from the tiny number of keratinocytes attached to a single hair plucked from a human scalp.

Their method, published ahead of print in the Oct. 17, 2008 online edition of Nature Biotechnology, not only provides a practical and simple alternative for the generation of patient- and disease-specific stem cells, which had been hampered by the low efficiency of the reprogramming process, but also spares patients invasive procedures to collect suitable starting material, since the process only requires a single human hair.

“Having a very efficient and practical way of generating patient-specific stem cells, which unlike human embryonic stem cells, wouldn’t be rejected by the patient’s immune system after transplantation brings us a step closer to the clinical application of stem cell therapy,” says Belmonte, PhD., a professor in the Gene Expression Laboratory and director of the Center of Regenerative Medicine in Barcelona, Spain.

Keratinocytes form the uppermost layer of skin and produce keratin, a tough protein that is the primary constituent of hair, nails and skin. They originate in the basal layer of the epidermis, from where they move up through the different layers of the epidermis and are eventually shed.

While scientists have successfully reprogrammed different types of mouse cells (fibroblasts, liver and intestinal cells), skin fibroblasts were the only human cell type they had ever tried their hands on. Fibroblasts help make the connective tissue in the body and are the primary cell type in the deeper layers of the skin, where they are responsible for wound healing and the secretion of proteins that form collagen.

For the first set of experiments, first author Trond Aasen, Ph.D., a postdoctoral researcher at the Center of Regenerative Medicine in Barcelona, used viral vectors to slip the genes for the master regulators Oct4, Sox2, as well as Klf4 and c-Myc into keratinocytes cultured from human skin explants. After only 10 days — instead of the more typical three to four weeks — one out of 100 hundred cells grew into a tiny colony with all the markings of a typical human embryonic stem cell colony.

The researchers then successfully prodded what they call keratinocyte-derived iPS cells or KiPS cells to distinguish them from fibroblast-derived iPS cells into becoming all the cell types in the human body, including heart muscle cells and dopamine-producing neurons, which are affected by Parkinson’s disease.

Taking advantage of the high efficiency of the keratinocyte reprogramming process, Aasen decided to test whether he could establish KiPS cells from minute amounts of biological samples. “We plucked a single hair from a co-worker’s scalp and cultured the keratinocytes, which are found in the outer root sheet area,” recalls Aasen. He then successfully reprogrammed these cells into bona fide KiPS cells.

Just why keratinocytes appear to be much more malleable than other cell types is still an open question. “We checked a whole rainbow of cells and found keratinocytes to be the easiest to be reprogrammed,” says Belmonte. “It is still not clear exactly why that is and knowing it will be very important for the technology to develop fully,” he speculates.

They researchers did find one hint, though. When they compared the expression profiles of genes related to stem cell identity, growth or differentiation between keratinocytes, fibroblasts, human embryonic stem cells (hESC) and KiPS cells, keratinocytes had more in common with hESCs and KiPS cells than with fibroblasts.

Researchers who also contributed to the study include Angel Raya, Ph.D., Maria J. Barrero, Ph.D., Elena Garreta, Ph.D., Antonella Consiglio, Ph.D., Federico Gonzales, Ph.D., Rita Vassena, Ph.D., Josipa Bilic, Ph.D., Vladimir Pekarik, Ph.D., Gustavo Tiscornia, Ph.D., Michael Edel, Ph.D., and Stéphanie Boué, Ph.D., at the Center of Regenerative Medicine in Barcelona, Spain.

The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.

Mauricio Minotta | Newswise Science News
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>