Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Successfully Reprogram Keratinocytes Attached to a Single Hair

21.10.2008
The first reports of the successful reprogramming of adult human cells back into so-called induced pluripotent stem (iPS) cells, which by all appearances looked and acted liked embryonic stem cells created a media stir. But the process was woefully inefficient: Only one out of 10,000 cells could be persuaded to turn back the clock.

Now, a team of researchers led by Juan Carlos Izpisúa Belmonte at the Salk Institute for Biological Studies, succeeded in boosting the reprogramming efficiency more than 100fold, while cutting the time it takes in half. In fact, they repeatedly generated iPS cells from the tiny number of keratinocytes attached to a single hair plucked from a human scalp.

Their method, published ahead of print in the Oct. 17, 2008 online edition of Nature Biotechnology, not only provides a practical and simple alternative for the generation of patient- and disease-specific stem cells, which had been hampered by the low efficiency of the reprogramming process, but also spares patients invasive procedures to collect suitable starting material, since the process only requires a single human hair.

“Having a very efficient and practical way of generating patient-specific stem cells, which unlike human embryonic stem cells, wouldn’t be rejected by the patient’s immune system after transplantation brings us a step closer to the clinical application of stem cell therapy,” says Belmonte, PhD., a professor in the Gene Expression Laboratory and director of the Center of Regenerative Medicine in Barcelona, Spain.

Keratinocytes form the uppermost layer of skin and produce keratin, a tough protein that is the primary constituent of hair, nails and skin. They originate in the basal layer of the epidermis, from where they move up through the different layers of the epidermis and are eventually shed.

While scientists have successfully reprogrammed different types of mouse cells (fibroblasts, liver and intestinal cells), skin fibroblasts were the only human cell type they had ever tried their hands on. Fibroblasts help make the connective tissue in the body and are the primary cell type in the deeper layers of the skin, where they are responsible for wound healing and the secretion of proteins that form collagen.

For the first set of experiments, first author Trond Aasen, Ph.D., a postdoctoral researcher at the Center of Regenerative Medicine in Barcelona, used viral vectors to slip the genes for the master regulators Oct4, Sox2, as well as Klf4 and c-Myc into keratinocytes cultured from human skin explants. After only 10 days — instead of the more typical three to four weeks — one out of 100 hundred cells grew into a tiny colony with all the markings of a typical human embryonic stem cell colony.

The researchers then successfully prodded what they call keratinocyte-derived iPS cells or KiPS cells to distinguish them from fibroblast-derived iPS cells into becoming all the cell types in the human body, including heart muscle cells and dopamine-producing neurons, which are affected by Parkinson’s disease.

Taking advantage of the high efficiency of the keratinocyte reprogramming process, Aasen decided to test whether he could establish KiPS cells from minute amounts of biological samples. “We plucked a single hair from a co-worker’s scalp and cultured the keratinocytes, which are found in the outer root sheet area,” recalls Aasen. He then successfully reprogrammed these cells into bona fide KiPS cells.

Just why keratinocytes appear to be much more malleable than other cell types is still an open question. “We checked a whole rainbow of cells and found keratinocytes to be the easiest to be reprogrammed,” says Belmonte. “It is still not clear exactly why that is and knowing it will be very important for the technology to develop fully,” he speculates.

They researchers did find one hint, though. When they compared the expression profiles of genes related to stem cell identity, growth or differentiation between keratinocytes, fibroblasts, human embryonic stem cells (hESC) and KiPS cells, keratinocytes had more in common with hESCs and KiPS cells than with fibroblasts.

Researchers who also contributed to the study include Angel Raya, Ph.D., Maria J. Barrero, Ph.D., Elena Garreta, Ph.D., Antonella Consiglio, Ph.D., Federico Gonzales, Ph.D., Rita Vassena, Ph.D., Josipa Bilic, Ph.D., Vladimir Pekarik, Ph.D., Gustavo Tiscornia, Ph.D., Michael Edel, Ph.D., and Stéphanie Boué, Ph.D., at the Center of Regenerative Medicine in Barcelona, Spain.

The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.

Mauricio Minotta | Newswise Science News
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>