Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers solve mystery of deep-sea fish with tubular eyes and transparent head

24.02.2009
Researchers at the Monterey Bay Aquarium Research Institute recently solved the half-century-old mystery of a fish with tubular eyes and a transparent head.

Ever since the "barreleye" fish Macropinna microstoma was first described in 1939, marine biologists have known that it's tubular eyes are very good at collecting light.

However, the eyes were believed to be fixed in place and seemed to provide only a "tunnel-vision" view of whatever was directly above the fish's head. A new paper by Bruce Robison and Kim Reisenbichler shows that these unusual eyes can rotate within a transparent shield that covers the fish's head. This allows the barreleye to peer up at potential prey or focus forward to see what it is eating.

Deep-sea fish have adapted to their pitch-black environment in a variety of amazing ways. Several species of deep-water fishes in the family Opisthoproctidae are called "barreleyes" because their eyes are tubular in shape. Barreleyes typically live near the depth where sunlight from the surface fades to complete blackness. They use their ultra-sensitive tubular eyes to search for the faint silhouettes of prey overhead.

Although such tubular eyes are very good at collecting light, they have a very narrow field of view. Furthermore, until now, most marine biologists believed that barreleye's eyes were fixed in their heads, which would allow them to only look upward. This would make it impossible for the fishes to see what was directly in front of them, and very difficult for them to capture prey with their small, pointed mouths.

Robison and Reisenbichler used video from MBARI's remotely operated vehicles (ROVs) to study barreleyes in the deep waters just offshore of Central California. At depths of 600 to 800 meters (2,000 to 2,600 feet) below the surface, the ROV cameras typically showed these fish hanging motionless in the water, their eyes glowing a vivid green in the ROV's bright lights. The ROV video also revealed a previously undescribed feature of these fish--its eyes are surrounded by a transparent, fluid-filled shield that covers the top of the fish's head.

Most existing descriptions and illustrations of this fish do not show its fluid-filled shield, probably because this fragile structure was destroyed when the fish were brought up from the deep in nets. However, Robison and Reisenbichler were extremely fortunate--they were able to bring a net-caught barreleye to the surface alive, where it survived for several hours in a ship-board aquarium. Within this controlled environment, the researchers were able to confirm what they had seen in the ROV video--the fish rotated its tubular eyes as it turned its body from a horizontal to a vertical position.

In addition to their amazing "headgear," barreleyes have a variety of other interesting adaptations to deep-sea life. Their large, flat fins allow them to remain nearly motionless in the water, and to maneuver very precisely (much like MBARI's ROVs). Their small mouths suggest that they can be very precise and selective in capturing small prey. On the other hand, their digestive systems are very large, which suggests that they can eat a variety of small drifting animals as well as jellies. In fact, the stomachs of the two net-caught fish contained fragments of jellies.

After documenting and studying the barreleye's unique adaptations, Robison and Reisenbichler developed a working hypothesis about how this animal makes a living. Most of the time, the fish hangs motionless in the water, with its body in a horizontal position and its eyes looking upward. The green pigments in its eyes may filter out sunlight coming directly from the sea surface, helping the barreleye spot the bioluminescent glow of jellies or other animals directly overhead. When it spots prey (such as a drifting jelly), the fish rotates its eyes forward and swims upward, in feeding mode.

Barreleyes share their deep-sea environment with many different types of jellies. Some of the most common are siphonophores (colonial jellies) in the genus Apolemia. These siphonophores grow to over 10 meters (33 feet) long. Like living drift nets, they trail thousands of stinging tentacles, which capture copepods and other small animals. The researchers speculate that barreleyes may maneuver carefully among the siphonophore's tentacles, picking off the captured organisms. The fish's eyes would rotate to help the fish keep its "eyes on the prize," while its transparent shield would protect the fish's eyes from the siphonophore's stinging cells.

Robison and Reisenbichler hope to do further research to find out if their discoveries about Macropinna microstoma also apply to other deep-sea fish with tubular eyes. The bizarre physiological adaptations of the barreleyes have puzzled oceanographers for generations. It is only with the advent of modern underwater robots that scientists have been able to observe such animals in their native environment, and thus to fully understand how these physical adaptations help them survive.

Kim Fulton-Bennett | MBARI
Further information:
http://www.mbari.org
http://www.mbari.org/news/news_releases/2009/barreleye/barreleye.html

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>