Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Selectively Control Anxiety Pathways in the Brain

10.03.2011
Study uses NSF-supported technology to identify neuronal circuitry

A new study sheds light--both literally and figuratively--on the intricate brain cell connections responsible for anxiety.

Scientists at Stanford University recently used light to activate mouse neurons and precisely identify neural circuits that increase or decrease anxiety-related behaviors. Pinpointing the origin of anxiety brings psychiatric professionals closer to understanding anxiety disorders, the most common class of psychiatric disease.

A research team led by Karl Deisseroth, associate professor of psychiatry and behavioral sciences and bioengineering, identified two key pathways in the brain: one which promotes anxiety, and one which alleviates anxiety.

The pathways are in a brain region called the amygdala. Prior research suggests the amygdala plays a role in anxiety, but earlier studies used widespread modifications of the amygdala, through drugs or physical disruption of the brain region, to study the way in which it affects anxiety. This new work, published in this week's Nature, uses a tool called optogenetics--developed by Deisseroth and recently named Method of the Year by Nature Methods--to specifically tease out which pathways contribute to anxiety.

Optogenetics combines genetics and optical science to selectively manipulate the way a neuron fires in the brain. Neurons are electrically excitable cells that convey information through electrical and chemical signaling.

Directed genetic manipulations cause specific neurons to assemble a light-activated protein normally found in algae and bacteria. When triggered by certain wavelengths of light, these proteins allow researchers to increase or decrease neuronal activity in the brain and observe the effects on rodent models in an experiment.

Using optogenetic manipulation of various amygdala pathways, Deisseroth and colleagues examined how mouse behavior was affected. Since mice display anxiety-related behaviors in open spaces, they measured changes in anxiety by analyzing how much time mice spent exploring the center of an open field, or exploring the length of a platform without walls.

While optogenetics has been used to study amygdala function in behaviorally-conditioned fear, this is the first time it has been used to study anxiety. "Fear and anxiety are different," Deisseroth explained. "Fear is a response to an immediate threat, but anxiety is a heightened state of apprehension with no immediate threat. They share the same outputs, for example physical manifestations such as increased heart rate, but their controls are very different."

Anxiety disorders are the most prevalent among all psychiatric diseases, and include diseases such as post-traumatic stress disorder, obsessive-compulsive disorder and phobias. Anxiety also contributes to other major psychiatric disorders such as depression and substance abuse.

"Now that we know that these cell projections [in the amygdala] exist, we can first use this knowledge to understand anxiety more than we do now," Deisseroth noted.

Deisseroth has previously used optogenetics to study deep brain stimulation in Parkinson's disease. This research was detailed last year in the journal Science and reported online by the National Science Foundation (NSF).

"Deep brain stimulation is increasingly being considered for psychiatric disorders, so after studying Parkinson's disease, we started building towards research on psychiatric disorders," Deisseroth commented. Next he wants to use these tools to study depression and autism spectrum disorders.

Groundwork for the optogenetics technique was funded by NSF. This research was supported by the National Alliance for Research on Schizophrenia and Depression, the National Institutes of Health and NSF.

Media Contacts
Bobbie Mixon, NSF (703) 292-8485 bmixon@nsf.gov
Nicole Garbarini, NSF (703) 292-8463 ngarbari@nsf.gov
Program Contacts
Melur K Ramasubramanian, NSF (703) 292-5089 mramasub@nsf.gov
Principal Investigators
Karl Deisseroth, Stanford University (650) 736-4325 deissero@stanford.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>