Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Selectively Control Anxiety Pathways in the Brain

Study uses NSF-supported technology to identify neuronal circuitry

A new study sheds light--both literally and figuratively--on the intricate brain cell connections responsible for anxiety.

Scientists at Stanford University recently used light to activate mouse neurons and precisely identify neural circuits that increase or decrease anxiety-related behaviors. Pinpointing the origin of anxiety brings psychiatric professionals closer to understanding anxiety disorders, the most common class of psychiatric disease.

A research team led by Karl Deisseroth, associate professor of psychiatry and behavioral sciences and bioengineering, identified two key pathways in the brain: one which promotes anxiety, and one which alleviates anxiety.

The pathways are in a brain region called the amygdala. Prior research suggests the amygdala plays a role in anxiety, but earlier studies used widespread modifications of the amygdala, through drugs or physical disruption of the brain region, to study the way in which it affects anxiety. This new work, published in this week's Nature, uses a tool called optogenetics--developed by Deisseroth and recently named Method of the Year by Nature Methods--to specifically tease out which pathways contribute to anxiety.

Optogenetics combines genetics and optical science to selectively manipulate the way a neuron fires in the brain. Neurons are electrically excitable cells that convey information through electrical and chemical signaling.

Directed genetic manipulations cause specific neurons to assemble a light-activated protein normally found in algae and bacteria. When triggered by certain wavelengths of light, these proteins allow researchers to increase or decrease neuronal activity in the brain and observe the effects on rodent models in an experiment.

Using optogenetic manipulation of various amygdala pathways, Deisseroth and colleagues examined how mouse behavior was affected. Since mice display anxiety-related behaviors in open spaces, they measured changes in anxiety by analyzing how much time mice spent exploring the center of an open field, or exploring the length of a platform without walls.

While optogenetics has been used to study amygdala function in behaviorally-conditioned fear, this is the first time it has been used to study anxiety. "Fear and anxiety are different," Deisseroth explained. "Fear is a response to an immediate threat, but anxiety is a heightened state of apprehension with no immediate threat. They share the same outputs, for example physical manifestations such as increased heart rate, but their controls are very different."

Anxiety disorders are the most prevalent among all psychiatric diseases, and include diseases such as post-traumatic stress disorder, obsessive-compulsive disorder and phobias. Anxiety also contributes to other major psychiatric disorders such as depression and substance abuse.

"Now that we know that these cell projections [in the amygdala] exist, we can first use this knowledge to understand anxiety more than we do now," Deisseroth noted.

Deisseroth has previously used optogenetics to study deep brain stimulation in Parkinson's disease. This research was detailed last year in the journal Science and reported online by the National Science Foundation (NSF).

"Deep brain stimulation is increasingly being considered for psychiatric disorders, so after studying Parkinson's disease, we started building towards research on psychiatric disorders," Deisseroth commented. Next he wants to use these tools to study depression and autism spectrum disorders.

Groundwork for the optogenetics technique was funded by NSF. This research was supported by the National Alliance for Research on Schizophrenia and Depression, the National Institutes of Health and NSF.

Media Contacts
Bobbie Mixon, NSF (703) 292-8485
Nicole Garbarini, NSF (703) 292-8463
Program Contacts
Melur K Ramasubramanian, NSF (703) 292-5089
Principal Investigators
Karl Deisseroth, Stanford University (650) 736-4325
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Bobbie Mixon | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>