Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Selectively Control Anxiety Pathways in the Brain

10.03.2011
Study uses NSF-supported technology to identify neuronal circuitry

A new study sheds light--both literally and figuratively--on the intricate brain cell connections responsible for anxiety.

Scientists at Stanford University recently used light to activate mouse neurons and precisely identify neural circuits that increase or decrease anxiety-related behaviors. Pinpointing the origin of anxiety brings psychiatric professionals closer to understanding anxiety disorders, the most common class of psychiatric disease.

A research team led by Karl Deisseroth, associate professor of psychiatry and behavioral sciences and bioengineering, identified two key pathways in the brain: one which promotes anxiety, and one which alleviates anxiety.

The pathways are in a brain region called the amygdala. Prior research suggests the amygdala plays a role in anxiety, but earlier studies used widespread modifications of the amygdala, through drugs or physical disruption of the brain region, to study the way in which it affects anxiety. This new work, published in this week's Nature, uses a tool called optogenetics--developed by Deisseroth and recently named Method of the Year by Nature Methods--to specifically tease out which pathways contribute to anxiety.

Optogenetics combines genetics and optical science to selectively manipulate the way a neuron fires in the brain. Neurons are electrically excitable cells that convey information through electrical and chemical signaling.

Directed genetic manipulations cause specific neurons to assemble a light-activated protein normally found in algae and bacteria. When triggered by certain wavelengths of light, these proteins allow researchers to increase or decrease neuronal activity in the brain and observe the effects on rodent models in an experiment.

Using optogenetic manipulation of various amygdala pathways, Deisseroth and colleagues examined how mouse behavior was affected. Since mice display anxiety-related behaviors in open spaces, they measured changes in anxiety by analyzing how much time mice spent exploring the center of an open field, or exploring the length of a platform without walls.

While optogenetics has been used to study amygdala function in behaviorally-conditioned fear, this is the first time it has been used to study anxiety. "Fear and anxiety are different," Deisseroth explained. "Fear is a response to an immediate threat, but anxiety is a heightened state of apprehension with no immediate threat. They share the same outputs, for example physical manifestations such as increased heart rate, but their controls are very different."

Anxiety disorders are the most prevalent among all psychiatric diseases, and include diseases such as post-traumatic stress disorder, obsessive-compulsive disorder and phobias. Anxiety also contributes to other major psychiatric disorders such as depression and substance abuse.

"Now that we know that these cell projections [in the amygdala] exist, we can first use this knowledge to understand anxiety more than we do now," Deisseroth noted.

Deisseroth has previously used optogenetics to study deep brain stimulation in Parkinson's disease. This research was detailed last year in the journal Science and reported online by the National Science Foundation (NSF).

"Deep brain stimulation is increasingly being considered for psychiatric disorders, so after studying Parkinson's disease, we started building towards research on psychiatric disorders," Deisseroth commented. Next he wants to use these tools to study depression and autism spectrum disorders.

Groundwork for the optogenetics technique was funded by NSF. This research was supported by the National Alliance for Research on Schizophrenia and Depression, the National Institutes of Health and NSF.

Media Contacts
Bobbie Mixon, NSF (703) 292-8485 bmixon@nsf.gov
Nicole Garbarini, NSF (703) 292-8463 ngarbari@nsf.gov
Program Contacts
Melur K Ramasubramanian, NSF (703) 292-5089 mramasub@nsf.gov
Principal Investigators
Karl Deisseroth, Stanford University (650) 736-4325 deissero@stanford.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>